Obuda University				Biomatics and Artificial Intelligence		
John von Neumann Faculty of Informatics					Institute	
Name and code:				Credits: 3		
Introduction to C	'ompute	r Integ	rated Surgery			
NSTIC1SEND 2022/2023 year I. semester						
Subject lecturers: Dr. Haidegger Tamás Péter, Nagyné Elek Renáta						
Prerequisites (with code):		ı				
Weekly hours:	Lectur	e: 2	Seminar.: 0		Lab. hours: 2	Consultation: 0
Way of	Midterm, exam, optional project work					
assessment:						
Course description:						

Goal: The course's goal is to understand the main concepts of Computer Integrated Surgery and modern medicine.

Course description: This course introduces the most important approaches in modern medicine, such as Robot-Assisted Surgery, medical imaging, image guided surgery, surgical skill assessment, neural network-based medical image processing, etc.

Lecture schedule						
Education wee						
1.	Introduction to Computer Integrated Surgery					
2.	Lab tour at the Antal Bejczy Center for Intelligent Robotics					
3.	Basics of robotics					
4.	Da Vinci Surgical System					
5.	Medical imaging					
6.	Image guided surgery I.					
7.	Image guided surgery II. + project works					
8.	Midterm					
9.	Surgical skill assessment					
10.	AR/VR					
11.	ural Networks					
12.	Da Vinci competitors					
13.	Business considerations in modern medicine + project works					
14.	Pre-exam					
Midterm requirements						
	Education week Topic					
8	. Lectures 1-7					

Final grade calculation methods

Midterm – 20%, Exam – 80%

Achieved result	Grade
85%-100%	excellent (5)
70%-84<%	good (4)
60%-69<%	average (3)
51%-59<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam

Written

Type of replacement

Project work

References

Mandatory:

Recommended:

D'Ettorre, Claudia, et al. "Accelerating Surgical Robotics Research: Reviewing 10 Years of Research with the dVRK." *arXiv preprint arXiv:2104.09869* (2021).