Assessment and subject description

Óbuda University Kandó Kálmán Faculty of Electrical Engineering					Institute of Microelectronics and Technology				
Subject name and code: Materials science for engin Full-time, Fall Semester					neers, KEXVR1ABNE Credits: 3				
Course: Electric	cal Engin	eering							
Responsible:	Csikósn Andrea	Csikósné Dr Pap Andrea, PhD.			Ba	Balázs Kovács, PhD			
Prerequisites:		no							
Contact hours per week:	Lectur	Lecture: 2 Cl		Class discussion: 0		Lab hours: 0	Tutorial	Tutorial: 0	
Assessment and evaluation:	Exam	Exam							
	·		Sı	ıbject desc	rip	tion			
<i>Aims</i> : Introduct methods, structu	ion to an are and pro-	nd basic operties	knowle of mater	edge of ma rials.	ter	ials science. Relatio	ons among p	oreparation	
<i>Topics to be cov</i> by 25%.	vered: Top	oics are o	detailed	below. The	lec	turer could deviate f	rom the liste	d topics	
Topics						Week	Lessons		
Introduction to materials science. Relations between composition, structure, processing and properties of materials.							1	2	
Structure of atoms. Bohr model and wave mechanics' models. The periodic table. Characteristic parameters. Atomic bonding. Relation between bonding and material behavior.						2	2		
Crystal structure. Types of crystals, lattice parameters. Packing factors, densities. Real crystals. Types of defects, lattice vibrations.						2			
Methods of investigation of crystal structure. Optical and electron microscopy. Atomic force and scanning tunneling microscopy. X-ray and electron diffraction.4						4	2		
Transport in materials. Equilibrium vs. non-equilibrium. Electrical and heat transport. Material transport: steady-state and non-steady-state diffusion. Oxidation.						5	2		
Test 1							6	2	
National Holiday							7	2	
Alloys. Phase transitions and phase diagram				ms.			8	2	
Mechanical properties of materials. Defor Ductility, toughness, hardness. Mechanica			mation, stress and strain. Il failures.			9	2		
Electrical properties of materials. Band theory. Metals, semiconductors, insulators.					emiconductors,	10	2		

Magnetic properties of materials. Types of magnetism. Ferro- and ferrimagnetism. Magnetic storage of information.	11	2
Optical properties of materials. Light interaction with solids. Absorption, reflection, transmission, refraction, polarization and their relation to electron structure. Light emission.	12	2
Test 2	13	2
New results in Material Sciences	14	2

Assessment and evaluation

Requirements of the signature:

- To attend the lectures is obligatory. Max 30% of the lecture could be passed.
- To pass both tests the student should overcome 50% of obtainable points of each test.
- To do the repeat test for free one occasion for each test will be provided.

Type of exam:

• Written, covering the all topics of the course. To pass the exam at least 50% of the obtainable points should be reached.

Suggested material

Fundamentals of Materials Science and Engineering

William D. Callister, Jr.; David G. Rethwisch; 910 pages; John Wiley & Sons; 4 Edition (2013);

ISBN: 978-1-118-32269-7

Semiconductor Devices: Physics and Technology Simon M. Sze, Ming-Kwei Lee; 592 pages; John Wiley & Sons; 3 Edition (2012); ISBN-10: 0470537949; ISBN-13: 978-0470537947

Comment:

The lecture's materials are the basics of the learning process. They could be found on the concerned web sites of the university (Moodle system) and on the lecturer's web page http://www.uni-obuda.hu/users/kovacs.balazs/.