Obuda University John von Neumann Faculty of Informatics				Ins	titute of Applied	Mathematics	
Name and co	de: N	IAMGI	1PMNE	Credits:			
Geometric inequalities: from flat to curved space					ces 2020/21 year II. semester		
Subject lecturers: Prof. dr. habil. Alexandru Kristály							
Prerequisites (code):	equisites (with e):		Calculus Iⅈ basic differential geometry				
Weekly	Lecture:		Seminar.:		Lab. hours:	Consultation:	
hours:							
Way of							
assessment:							
Course description:							
Goal: To provide an insight into the theory of geometric inequalities on flat							
and curved settings							
Course description: Several mathematical problem can be reduced to the study of							
geometric inequalities where the curvature of the space plays a crucial role. During the course							
we provide a quite complete picture about this theory, showing both theoretical aspects and							
specific applications by using optimal mass transport arguments, symmetrisation, etc.							

Lecture schedule						
Education week	Торіс					
1.	Brunn-Minkowski inequalities					
2.	Isoperimetric inequalities					
3.	Monge-Ampere equation and Kantorovich duality					
4.	Borell-Brascamp-Lieb-type inequalities: flat case					
5.	Distortion coefficients					
6.	Borell-Brascamp-Lieb-type inequalities: curved case					
7.	Equality cases in Borell-Brascamp-Lieb-type inequalities					
8.	CD(K,N) inequalities of Lott-Sturm-Villani					
9.	Heisenberg groups: failure of CD(K,N)					
10.	Borell-Brascamp-Lieb-type inequalities on Heisenberg groups					
11.	Busemann and Aleksandrov-type inequalities on curved spaces					
12.	Convexity notions on negatively curved spaces					
13.	Geometric inequalities for first eigenvalues					
14.	Open problems: geometric inequalities					
Midterm requirements						
Education w	reek Topic					

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

Type of exam Project presentation & Written exam **Type of replacement** Project presentation

References

Mandatory:

- 1. Kristály A., Radulescu V., Varga Cs., *Variational Principles in Mathematical Physics, Geometry, and Economics*, Cambridge University Press, Enciclopedia of Mathematics and its Applications. No 136, 2010.
- 2. Balogh Z., Kristály A., Sipos K., Geometric inequalities on Heisenberg groups. *Calc. Var. Partial Differential Equations* 57 (2018), no. 2, Paper No. 61, 41 pp.
- 3. Villani C., *Optimal Transport*, Volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009).

Recommended:

- 1. Balogh Z., Kristály A., Equality in Borell-Brascamp-Lieb inequalities on curved spaces. *Adv. Math.* 339 (2018), 453–494.
- 2. Colesanti A., Brunn-Minkowski inequalities for variational functionals and related problems. *Adv. Math.* 194 (2005), no. 1, 105–140.
- 3. Cordero-Erausquin D., McCann R.J., Schmuckenschläger M., A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. *Invent. Math.* 146(2), 219–257 (2001).
- 4. Villani C., *Topics in Optimal Transportation*, Volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003).