1. Please, classify the following numbers to the right group of numbers. Which ones of the following numbers are integer, rational, irrational real numbers?
a) $3.14, \quad$ b) $-2, \quad$ c) 3^{6},
d) $\frac{16}{5}$
e) $\sqrt{2}, \quad$ f) $\frac{\sqrt{3}}{4}$,
$\begin{array}{ll}\text { g) } \frac{\frac{120}{8}}{\frac{85}{24}} & \text { h) } \sqrt{-4}\end{array}$

Taking into account your solution, what is the correct answer from the followings:
A.) integers: b), c), h); rationals: b), d) irrational real numbers: a), e), f)
B.) integers: b), c); rationals: a), b), c), d), g) irrational real numbers: e), f)
C.) integers: b), c), g); rationals: a), b), c), d), g) irrational real numbers: e), f)
D.) integers: b), c), g); rationals: a), b), c), d), g) irrational real numbers: e), f), h)
2. Please, simplify the following mathematical algebraic sentence, and give the final result!

$$
\frac{\left(7 \cdot a^{2} \cdot b^{6}\right)^{2}}{\left(2 \cdot a^{3} \cdot b^{4}\right)^{3}} \div \frac{49 \cdot a^{3} \cdot b^{4}}{\left(4 \cdot a^{4} \cdot b^{2}\right)^{2}} \quad, a \neq 0, b \neq 0
$$

What is the result? Choose the correct answer from the following possibilities!
A.) Result is: $\frac{2}{7} \cdot a \cdot b$
B.) Result is: $\frac{2}{7}$
C.) Result is: 2
D.) Result is: $a \cdot b$
3. Solve the following algebraic equation if \boldsymbol{x} is an integer number!

$$
\frac{x}{x-2}-\frac{x+2}{1-x}=\frac{-3}{x^{2}-3 x+2}
$$

A.) Result is: $x=1$
B.) Results are: $x=1$ and $x=-\frac{1}{2}$
C.) Result is: $x=-\frac{1}{2}$
D.) Result is: there is no solution for this problem
4. Solve the following algebraic system of equation if $\boldsymbol{x}, \boldsymbol{y}$ are both positive real numbers!

$$
\begin{aligned}
& x-y=7^{0} \\
& 4^{x} \cdot 2^{x-y}=32
\end{aligned}
$$

Checking your solution, which is the correct answer from the followings:
A.) there is no solution for this problem
B.) Results are: $x=2$ and $y=1$
C.) Results are: $x=\frac{5}{2}$ and $y=\frac{5}{2}$
D.) Results are: $x=\sqrt{5}$ and $y=\sqrt{5}$
5. If the universal set $U=\{x \mid x$ is an integer and $5 \leq x \leq 21\}$ and A, B, C are subsets of U such that $A=\{x \mid x$ is an odd real number $\}, B=\{x \mid x$ is divisible by 5$\}, C=$ $\left\{x \mid x\right.$ is a solution of $x^{2}-21 x+90<0$ inequality $\}$. Please, list the elements of the following sets:
$A \cap B, \quad B \cup C, \quad A \cap(B \cup C), \quad U \backslash A$ (difference of sets of U and A)
Choose the correct answer from the followings:
A.) $A \cap B=\{5 ; 7 ; 9 ; 10 ; 11 ; 13 ; 15 ; 17 ; 19 ; 20 ; 21\}, \quad B \cup C=\{10\}$, $A \cap(B \cup C)=\{5 ; 7 ; 9 ; 10 ; 11 ; 13 ; 15 ; 17 ; 19 ; 21\}, \quad U \backslash A=\{6 ; 8 ; 10 ; 12 ; 14 ; 16 ; 18 ; 20\}$
B.) $A \cap B=\{5 ; 15\}, \quad B \cup C=\{5 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 20\}$, $A \cap(B \cup C)=\{5 ; 7 ; 9 ; 11 ; 13 ; 15\}, \quad U \backslash A=\emptyset$, where \emptyset means the empty set.
C.) $A \cap B=\{5 ; 7 ; 9 ; 10 ; 11 ; 13 ; 15 ; 17 ; 19 ; 20 ; 21\}, \quad B \cup C=\{10\}$, $A \cap(B \cup C)=\{5 ; 7 ; 9 ; 10 ; 11 ; 13 ; 15 ; 17 ; 19 ; 21\}, \quad U \backslash A=\emptyset$, where \emptyset means the empty set.
D.) $A \cap B=\{5 ; 15\}, \quad B \cup C=\{5 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 20\}$, $A \cap(B \cup C)=\{5 ; 7 ; 9 ; 11 ; 13 ; 15\}, U \backslash A=\{6 ; 8 ; 10 ; 12 ; 14 ; 16 ; 18 ; 20\}$
6. Give the possible widest domain of the real numbers for the following mathematical sentence:

$$
\sqrt{\log _{2} x}
$$

Using your solution, choose the correct answer from the following possibilities:
A.) Only x is real number and $1<x$ gives solution for the problem mentioned above.
B.) Only x is real number and $0<x$ gives solution for the problem mentioned above.
C.) Only x is real number and $1 \leq x$ gives solution for the problem mentioned above.
D.) Any x real number gives solution for the problem mentioned above.
7. Let $\mathcal{A}=\frac{1}{(\sin x) \cdot(\cos x)-1}$ given. Which are/is correct sentence(s) from the followings regarding to \mathcal{A}.
A.) In the case of $k \cdot \pi$ if k is any integer real number, the domain of \mathcal{A} is an empty set.
B.) There is x real number, which case $\mathcal{A}=0$.
C.) There is x integer number, which case $\mathcal{A}=100$.
D.) There is no any x real number, which case the domain of \mathcal{A} is an empty set.

