
Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 179 –

Abstraction-enriched Formal Methods

Integration

Slavomír Šimoňák1, Matúš Uchnár1, Peter Feciľak1, Eva

Chovancová1, Martin Chovanec2

1Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

2Institute of Computer Technology, Technical University of Košice, B. Němcovej

3, 042 00 Košice, Slovakia

e-mails: slavomir.simonak@tuke.sk, matus.uchnar@tuke.sk,

peter.fecilak@tuke.sk, eva.chovancova@tuke.sk, martin.chovanec@tuke.sk

Abstract: The paper presents the results of our research in the field of combining process

algebra and Petri nets. To provide better support for design and analysis of larger-scale

systems by means of abstraction mechanism, the method itself and the tools allowing its

practical application have been enhanced significantly. The theoretical aspects and

implementation of enhancements are discussed in detail. Careful testing, along with the

process of implementing the new functionality into one of the involved tools, helped us to

disclose its certain hidden imperfections, which are subsequently addressed.

Keywords: process algebra; Petri nets; formal methods integration; abstraction

1 Introduction

Formal methods offer a mathematically-based framework, allowing for a

systematic specification, development, and analysis of systems. When applying

formal methods to the design and analysis of real-life-sized systems, the usage of

different methods and different verification techniques can be very useful. It might

be either because a particular formalism is most suitable for the design of an

individual component or the designer is interested in different system properties to

investigate, or to cope with the complexity of the system [1].

The existence of successful series of conferences on Integrated Formal Methods

(iFM), refers to the importance of formal methods integration. The conferences

cover all aspects of the integration from language design, through the analysis to

the tools and their application in software engineering practice [1]. In September

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 180 –

2017, 13th International Conference of this kind (iFM 2017) was organized in

Torino, Italy.

Formal methods integration, in this particular case, is based on the transformation

of process algebra ACP [6] specifications into the corresponding Petri net

representations. Source algebraic specification of a system, supplied by using

XML-based PAML language [31], is processed by the ACP2Petri tool, which

produces corresponding Petri net based representation of the system in PNML

[21] format.

1.1 Motivation

Despite the large number of existing formal methods, new methods are currently

being developed. In such a situation, it is actually very fruitful to study various

combinations of several methods with different characteristics and complementary

strengths [7]. Petri nets have an intuitive graphical representation, they allow to

describe both the states and the actions of the considered system and offer many

analytical techniques [11] for investigation of structural as well as the behavioral

properties of a model. Process algebra is a symbolic formalism, which is focused

on the dynamic behavior of a system. Algebraic specification usually has no

explicit representation of states and available proof techniques are generally aimed

at investigating the equality of behavioral descriptions [7]. So we can conclude

that Petri nets and process algebra can be considered complementary in several

aspects.

According to our experience, it is very useful to build the specification of the

system once and to obtain the corresponding specification in different formalisms,

after automatic transformation, with almost no effort. For the purposes of the

analysis, both models can be used and according to the properties of interest, we

can choose the best one.

In many cases, the intuitive graphical representation offered by Petri nets, supports

a better understanding of the structure and operation of the system under

consideration [15]. In the case of modeling larger systems, however, benefits of

graphical representation are less evident with an increasing size and complexity of

a system. Algebraic specification in such situations is often much more compact

than the corresponding Petri net. On the other hand, the main source of motivation

for transforming algebraic specifications into the Petri net formalism is the access

to analytical techniques and the results available for Petri nets [18]. The design

and analysis of communication protocols can serve as an example of application

of the approach, mentioned above [32]. We believe that, in many cases, it is

simpler to create a specification for a particular communication protocol using

process algebra, rather than Petri nets. It can be done by specifying the

communicating entities and the communication medium separately and

composing them together by the means of process algebra’s parallel composition

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 181 –

operation. When it comes to analysis, the powerful analytical apparatus of Petri

nets, including automatic generation of system invariants, is highly appreciated.

After years of using the method [32] and the set of tools associated with it, we

recognized the need for a major update. The need was connected with the inability

of processing abstraction [17] within specifications of bigger systems. The last

significant update was oriented towards a graphical user interface [3] and fixing

some shortcomings found within the ACP2Petri tool [34]. Such an update not only

provided a better user experience, when using the application, but also allowed for

tracing the progress of transformation, in a visual way. This enabled a better

understanding of how the process of transformation is implemented and it resulted

in disclosure of some shortcomings, which were repaired subsequently.

The fact that one of the most advanced toolsets for the mCRL2 specification

language [20], based on process algebra ACP, still does not support recursive

parallelism [27], can be perceived as a limitation in some cases. Therefore, it can

be considered as another source of motivation.

1.2 Related Work

Research in the field of relating both process algebra and Petri nets, two

fundamental concurrency theories, is not new and many influential works have

been published [13, 26, 29]. On the other hand, the research is still active and it

produces new and interesting results. In [18] a calculus (Finite-net Multi-CCS),

inspired by CCS, is introduced and provided by a labeled transition system as well

as Petri net semantics. The ability to represent finite, statically reduced, P/T nets

by well-formed finite-net Multi-CCS processes is shown in [19]. A framework is

introduced in [9] where a net encoding can be constructed for calculi using

different communication patterns.

A simple process calculus of Petri nets (Petri calculus) is defined in [30]. The

main motivation here is to provide the compositional approach for defining the

semantics of Petri nets. Within the paper, a compositional extension of

Condition/Event nets is introduced. A net is associated with interfaces to which its

transitions can be connected. Composition of such nets along a common interface

is performed by synchronization of transitions. It is shown that the class of nets

with boundaries has the same expressiveness as a simple process calculus.

The relations between the Petri Box Calculus and a class of P/T Petri nets are

considered in [10]. PBC terms are carefully designed in order to define the

transformation producing P/T nets preserving the structural operational semantics

of the terms. In such way a composition of P/T nets is allowed. A unique algebraic

semantics for Petri nets, based on process algebra ACP, is introduced in [8].

Actions of the PTNA (Place/Transition-Net Algebra) correspond to production

and consumption of tokens by Petri net transitions. It is shown, that both Petri net

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 182 –

and its corresponding algebraic representation have identical operational behavior.

The results are further enhanced to hierarchical P/T nets.

Compared to the existing approaches, mentioned above, our approach differs in

several aspects. We use widely-adopted formalisms without defining their special

extensions, as is the case in many available solutions. This fact implies a

reasonable support by existing tools and contributes to its practical application.

Process algebra ACP has been selected as a part of our integration framework in

this case, as we believe it has its own advantages compared to other well-known

process algebras such as CCS and CSP. Compared to the other two, ACP

emphasizes the algebraic aspect, more. The equational theory is the central point

here. It can be equipped with a range of semantical models [5]. The

communication scheme of ACP is also more general, since in CCS

communication is combined with abstraction and it is combined with restriction in

case of CSP. Last, but not least, there is a software toolset for the implementation

of our transformation, therefore, it is much more available, for practical

utilization.

2 Theoretical Background

Previous enhancements were connected mainly with the changes within the main

transformation tool - the ACP2Petri. The current extension, on the other hand, is

more profound and it affects both the theoretical foundations and the supporting

tools. The theoretical foundations of the transformation were published in [35] and

are only shortly summarized here and extended by the new properties.

Elementary nets represent the basic building blocks of more complex

specifications and they correspond to the notion of atomic actions of process

algebra ACP. Except those, we defined also the elementary nets corresponding to

the empty process (ε) and the deadlock (δ).

Let a process Q be represented by the term a (aQ). Then corresponding

elementary net (
aNQN)() is given by:),,,(postpreTPNa , where

},{ QQP , }{aT , 1),(aQpre , 1),(aQpost , }{)(QPI , and

}{)(QPF . Here TP, stand for sets of places and transitions respectively.

()pre and ()post represent pre- and post- transition relation, giving the structure

of the net.)(PI and)(PF are the sets of initial and final places of the given Petri

net, respectively. Here, N() stands for the mapping from the process term to the

corresponding Petri net. In Table 1, Petri net configurations are summarized for all

elementary net types, together with their graphical representations.

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 183 –

Table 1

Elementary nets

aQ Q Q

},{ QQP

}{)(QPI

}{)(QPF

}{QP

}{)(QPI

}{)(QPF

}{QP

}{)(QPI

{})(PF

a) b) c)

The net operations are defined, corresponding to the operators of process algebra

ACP, which are necessary for expressing the net semantics, of more complex

algebraic terms.

Table 2

Petri net composition operations

N1 N2

I(P1) I(P2)

F(P1) F(P2)

Q

Q'

... ...

... ...

N1

N2

I(P2)

...

a) b) c)

The net operations defined correspond to alternative composition (+), sequential

composition (·), parallel composition with communication (||) and encapsulation

operation (∂) of the process algebra ACP. The net operations mentioned above are

only briefly discussed here. They are depicted in Table 2 and explained deeper in

[35]. The alternative composition (case a) in Table 2) of two Petri nets is

constructed by enhancing a set of places (given by union of sets of places of

composed nets) by two additional places (Q, Q’), where Q will be the initial place

and Q’ the final place of the composition. In the case of sequential composition

(case b) in Table 2), the final place of the first of composed nets (N1) is connected

to the initial place(s) of the second of nets (N2) by the new, ε-labeled transition.

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 184 –

As we can observe, the set of final places in the elementary net corresponding to

deadlock (δ) is empty, meaning that there is no possibility to append another Petri

net to such net by operation of sequential composition, which corresponds to the

desired behavior.

The parallel composition of two Petri nets can be slightly more complicated,

especially when the communication of the processes represented by the Petri nets

is considered. Figure depicted in c) of Table 2 illustrates the situation, where two

actions a and b are able to communicate and the result of such communication is

the action c. Within the process algebra ACP such communication possibility can

be expressed by means of communication function cba),(. In the situation

depicted by the figure, a Petri net denoted by x represents the net obtained from

the net N1 by removing its initial place, transition a, and corresponding arcs. Petri

net denoted by y can be obtained analogically. Petri net corresponding to the

application of the encapsulation operation is constructed in such way that

transitions labeled by the actions from the encapsulation set (H) are removed from

the net as well as the arcs connected to those transitions. For expressing the Petri

net semantics of APC terms inductive rules were defined:

)()()(RNQNRQN (1)

)()()(RNQNRQN (2)

)()()||(RNQNRQN || (3)

))(())((QNQN H (4)

While on the left side of equations (1) – (4), there are operators (+, ·, ||, ∂) of

process algebra ACP, operators on the right side of the equations refer to their

equivalents on Petri nets. To distinguish them, the Petri net operators are

emphasized using the bold face text.

Abstraction [24] is a fundamental mechanism in the design of hierarchical

systems. Such mechanism allows us to abstract away from the internal operation

of modules from which larger systems are composed. Without such a mechanism,

it would be virtually impossible to specify anything useful, except in a very small

system [4].

If we want to abstract from certain actions, it does not mean that we can simply

remove those actions, because we want to preserve the behavior of original

process apart from the abstracted actions [6, 17]. So, the silent step (τ), is

introduced, which can be removed in some cases, but cannot be removed in other

cases. In [6] two τ-laws are formulated, giving the exact behavior of the silent step

(Table 3).

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 185 –

Table 3

Behavior of silent step

xx B1

)())((zyxyzyx B2

So the abstraction essentially represents a renaming of given actions into τ. The

abstraction operator (τI) is introduced, which renames all actions from the set I

into τ. As a consequence, additional axioms (Table 4) are included to the axiom

system of process algebra ACP. It holds that δI, since δA and IA, so δ is

never renamed into τ. In the Table 4 it is assumed that aAδ,τ.

Table 4

Axioms for abstraction

aaI)(Ia if TI1

)(aI
 Ia if TI2

)()()(yxyx III TI3

)()()(yxxy III TI4

The silent step is not allowed to communicate with other actions and therefore it is

defined (5) that communication involving τ results in deadlock [17, 6].

},{for ,| Aaa (5)

The complete axiom system for process algebra ACP extended by the notion of

silent step (ACPτ) including axioms B1, B2 and TI1-TI4 can be found in [6].

3 Adding Abstraction Support within the Toolset

A new unary operation was added to the existing set of net operations, which

corresponds to the application of the abstraction operator (τI) of process algebra

ACP. The result is a Petri net where the transitions with labels from the set I are

renamed to the silent action τ. So the new operation can be expressed more

formally in a following way:

))(())((QNQN I (6)

While the left side of equation (6), τI represents the abstraction operator of process

algebra ACP, τI and the right side refers to its equivalent in Petri nets. The toolset

including the PATool, as well as, the ACP2Petri needed update and incorporate

the new transformation possibilities.

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 186 –

3.1 Updating the PATool

The PATool [31] provides some useful functionality supporting the integration of

process algebra and Petri nets. It is able to work with the various formats used in

algebraic specifications, provides valuable capabilities of conversion and serves as

an interface to additional transformation tools, including the ACP2Petri. PATool

in this case is used to translate a text based ACP specification to the PAML

format, which is suitable for processing by the ACP2Petri. New elements allowing

for use of abstraction within specifications were added to the input (text-based) as

well as the output (XML-based) language. The input language enhancements

include two new statements: tauset, for specifying the set of actions to be

abstracted away and the tau for applying the abstraction renaming to a particular

process. The updated DTD specification of the output language can be found in

Table 5. Within the table, updated parts are emphasized using the bold face text.

Table 5

Updated DTD specification

<!-- ACP tau DTD for process specifications -->

<!ELEMENT ACPSPEC (GAMMA*,ENCSET*,TAUSET*,ACPEQUATION+)>

<!ELEMENT ACPEQUATION (VAR,ACPTERM)>

<!ATTLIST ACPEQUATION INIT CDATA #REQUIRED>

<!ELEMENT ACPTERM (ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU)>

<!ELEMENT ALTCMP ((ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU),

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU))>

<!ELEMENT SEQCMP ((ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU),

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU))>

<!ELEMENT PARCMP ((ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU),

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU))>

<!ELEMENT ENCAPS (ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU)>

<!ATTLIST ENCAPS ENCID CDATA #REQUIRED>

<!ELEMENT TAU (ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS|TAU)>

<!ATTLIST TAU TAUID CDATA #REQUIRED>

<!ELEMENT ACTION EMPTY>

<!ATTLIST ACTION NAME CDATA #REQUIRED>

<!ELEMENT VAR EMPTY>

<!ATTLIST VAR NAME CDATA #REQUIRED>

<!ELEMENT GAMMA EMPTY>

<!ATTLIST GAMMA ACT1 CDATA #REQUIRED ACT2 CDATA #REQUIRED RES CDATA #REQUIRED>

<!ELEMENT ENCSET (ACTION*)>

<!ATTLIST ENCSET ENCID CDATA #REQUIRED>

<!ELEMENT TAUSET (ACTION*)>

<!ATTLIST TAUSET TAUID CDATA #REQUIRED>

To illustrate a text-based ACP specification and a corresponding PAML

specification we provide an example in Table 6 and Table 7 respectively.

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 187 –

Table 6

Example of text-based ACP specification

gamma(a,b)=c

encset[H](b)

tauset[I](d)

X = encaps[H](tau[I](Y || Z))

Y = b.e

Z = b.d

Within the example, gamma(a,b)=c represents the definition of communication

function, where two actions a, b are able to communicate and the result of such

communication is the action c. encset[H](b) defines the set of actions (H) to be

encapsulated, while encapsulation itself is applied by the encaps[H] operator.

Similarly, tauset[I] defines the set of actions (I) for renaming to silent step.

Abstraction renaming is applied by tau[I] to the parallel composition of

processes Y and Z.

Table 7

Example of corresponding PAML specification

<ACPSPEC>

 <GAMMA ACT1="a" ACT2="b"

RES="c"></GAMMA>

 <ENCSET ENCID="H">

 <ACTION NAME="b"></ACTION>

 </ENCSET>

 <TAUSET TAUID="I">

 <ACTION NAME="d"></ACTION>

 </TAUSET>

 <ACPEQUATION INIT="true">

 <VAR NAME="X"></VAR>

 <ACPTERM>

 <ENCAPS ENCID="H">

 <TAU TAUID="I">

 <PARCMP>

 <VAR NAME="Y"></VAR>

 <VAR NAME="Z"></VAR>

 </PARCMP>

 </TAU>

 </ENCAPS>

 </ACPTERM>

 </ACPEQUATION>

 <ACPEQUATION INIT="false">

 <VAR NAME="Y"></VAR>

 <ACPTERM>

 <SEQCMP>

 <ACTION NAME="b"></ACTION>

 <ACTION NAME="e"></ACTION>

 </SEQCMP>

 </ACPTERM>

 </ACPEQUATION>

 <ACPEQUATION INIT="false">

 <VAR NAME="Z"></VAR>

 <ACPTERM>

 <SEQCMP>

 <ACTION NAME="b"></ACTION>

 <ACTION NAME="d"></ACTION>

 </SEQCMP>

 </ACPTERM>

 </ACPEQUATION>

</ACPSPEC>

With respect to new elements of the language to be processed by the PATool, the

core functionality of the tool has been updated to reflect the changes. Now the tool

provides conversion of text-based ACP specifications, including the abstraction

related elements, to the PAML format, suitable for further processing by the

ACP2Petri.

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 188 –

3.2 Enhancing the ACP2Petri Tool

The ACP2Petri also required substantial updates to reflect the new transformation

properties. It was necessary to create sets of actions defined by the TAUSET

element of source specification and identified by TAUID attribute in order to apply

abstraction renaming performed by TAU operation to correct actions of the

particular process.

Special attention has been paid to more complicated cases, like the nested

application of abstraction operator, or its combination with recursion and

parallelism, as it is illustrated in Figure 1, while the full specification of example

is provided in Table 8.

Table 8

Specification with application of abstraction operator

tauset[I](a)

tauset[J](b)

tauset[K](c)

X = tau[I](tau[J](tau[K](a.b.c.d.(X || X))))

Within the specification in Table 8, all the actions (a,b,c) except the action d are

renamed to silent action by the means of nested application of abstraction

operator.

However, not all actions renamed to silent action τ can be simply removed from

the resulting Petri net. The reasons were discussed in section 2 of this paper and

are connected with the effort to preserve the behavior of the original process apart

from the abstracted actions. To remove those silent actions, which can be removed

safely, we implemented a special "Tau removing mode" functionality within the

tool for the case the system designer wishes to remove them. This functionality

can be switched on using the command line option (-t) when starting the

ACP2Petri tool.

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 189 –

Figure 1

Application of abstraction operator in ACP2Petri

Since the program has been started with the –t option for removing silent actions,

all three of them (named tau-x in Figure 1) are removed in the next step and the

resulting Petri net is depicted in Figure 2. As it was stated above, not all of the

silent actions can be removed automatically.

Figure 2

Removing silent actions in ACP2Petri

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 190 –

To illustrate the difference, we provide another example (Table 9) containing also

the silent action which will not be automatically removed by the tool.

Table 9

Specification containing abstraction operator

tauset[I](b)

X = tau[I](b.(a.b + b.a))

According to the specification above the set I contains single action (b) to be

abstracted away within the process X by the application of the abstraction

operator. All three occurrences of the action b are renamed to silent action τ, but

only two of them are scheduled to be removed by the tool automatically and

denoted by tau-x label, as it is shown in the Figure 3.

Figure 3

Silent actions in Petri net

As it can be observed, only two of three silent actions have been removed

(described as tau-x in the Figure 3) by the tool, while one (described as tau) has

been retained. The resulting Petri net is shown in Figure 4, containing two a-

labeled actions and one silent action tau.

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 191 –

Figure 4

Removing selected silent actions by the ACP2Petri tool

The most important extensions of the tool were described within this section;

however, some of the less apparent, but still very useful updates are described in

the following one.

4 Additional Improvements

Updates we are discussing within the paper, not only introduced the abstraction as

a fundamental design mechanism, but lead also to some additional corrections to

the process of transformation. An extensive testing of newly implemented

extensions allowed us to uncover certain hidden imperfections within some of the

older functionality of the ACP2Petri tool. One of such imperfections is illustrated

by small example given in Table 10, where recursion and encapsulation are used

together.

Table 10

Repairing imperfections present in older version of the tool

gamma(a,b) = c

encset[H](c)

X = encaps[H](a.b.X)

The older version of the tool (Figure 5) was not able to handle this combination of

operations correctly and did not identify the place holding a token with the place

marked by X. In such form the resulting Petri net does not reflect the full behavior

of the process X. It is easy to spot the difference in a small system like this, and

adjust it eventually, but for larger-scale systems it could induce serious problems.

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 192 –

Figure 5

Incorrect Petri net produced by the older version of the tool

The correct Petri net representation of the process, produced by the current version

of the tool, is shown in Figure 6. In some rare, more complicated cases, we even

found that the transformation was not finished successfully and the exception was

generated. Regardless of our current effort, only a further, more practical

exploitation of the tool can show if there are some additional shortcomings.

Figure 6

Correct Petri net produced by the current version of the tool

The additional improvement is connected with the ability to further simplify the

Petri net generated by the tool in case if it is possible. The Petri net of CB system

(Figure 7) can serve as an example, whose operation will be detailed within the

next section of the paper. Here the place X and the e-labeled transition,

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 193 –

representing the empty action, are present within the net, for the purpose of

distributing tokens to the places B12 and B23, representing the initial places of

concurrently working components of the system.

Figure 7

Petri net of the CB system

When places B12 and B23 are marked, then the place X, the e-labeled transition that

is connected to the place and the corresponding arcs are not required for the

correct operation of the system and can be removed. Such functionality was

incorporated into the ACP2Petri tool and can be activated using the –i command

line option. The resulting Petri net can be found in Figure 10.

5 Illustrating Example

In this section, there is a small practical example exposing also the newly adopted

properties of the transformation presented. We have chosen a Coupling buffers

(CB) system adapted from [6], which is depicted in Figure 8. The system

represents the buffer with a capacity for two items, composed from two one-

element buffers (B12 and B23).

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 194 –

Figure 8

Coupling buffers system

Ports 1 and 3 of the system represent input and output ports, respectively, whereas

port 2 is the internal one, allowing for communication between the two buffers

(B12 and B23). The algebraic specification of the CB system is given in Table 11.

Table 11

Specification of the CB system

gamma(s20,r20) = c20

gamma(s21,r21) = c21

encset[H](r20,s20,r21,s21)

tauset[I](c20,c21)

B12 = r10.s20.B12 + r11.s21.B12

B23 = r20.s30.B23 + r21.s31.B23

X = tau[I](encaps[H](B12||B23))

According to the specification, one-element buffer can read element 0 or 1 at its

input port and send the read element to its output port. In case of the buffer B12,

the input port is port 1, so action reading element 0 from this port is named r10

and r11 in case of reading the element 1. The buffer can then send the element

that is just read to output port 2. Two buffers are composed using the parallel

composition operator and they can communicate over internal port 2, which is

expressed by the means of communication function (gamma). Internal actions of

the system (r20, s20, r21, s21) are further encapsulated by the encapsulation

operator (encaps). In this way, the communication between buffers B12 and B23

over internal port 2 is expressed by actions c20 and c21. Since we are interested

only in an external behavior of the CB system, the actions just mentioned, are

abstracted away using the tau operator.

A simulation of the CB system operation was performed using the PSF Toolkit

[14]. Actions executed by the system (recorded in the TRACE window) are

indicated by atom prefix, and the internal (hidden) actions are indicated by com.

skip prefix as it is illustrated in Figure 9. The specification of the system, using the

PSF language, based on process algebra ACP, is given in the PSF window of the

figure.

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 195 –

Figure 9

Simulation of the CB system using the PSF Toolkit

After processing the specification from Table 11, by the tools described within the

paper, the resulting Petri net can be imported by the variety of available Petri net

tools for further processing. Wolfgang Petri net editor [36] e.g. allows us to

display the execution trace (Figure 10), which can be easily compared to the trace

we got by simulating the algebraic specification using the PSF Toolkit. After

removing silent actions we can observe that we were able to simulate the same

sequences of actions. In general, for the CB system we can conclude that the

ordering of elements entering the system on its input port 1 is the same as ordering

of elements leaving the system via the output port 3. Our simulation-based

observations correspond to this behavior.

A further analysis can be done by e.g. means of the structure theory of Petri nets

[11], which investigates what behavioral properties of particular Petri net can be

deduced from its structural properties. By means of instruments like reachability

graph, coverability graph, S-Invariants, and T-invariants, many important

properties of the system considered can be investigated. The petri net of the CB

system, depicted in Figure 10, according to the analysis performed using the tool

Netlab [28] is reversible, live, bounded and it has no deadlock.

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 196 –

Figure 10

Simulation of the CB system using the Wolfgang tool

Conclusions

Within the paper we described our latest effort in the field of combining process

algebra and Petri nets. The method has been updated by the means required for

utilizing the benefits of the abstraction mechanism in order to provide better

support for a convenient design and analysis of larger-scale systems.

Except the method itself, the tools allowing the practical application of its benefits

were also extended, in order to support the new features. The PATool has been

updated to reflect the new enhancements available for use in ACP specifications.

The transformation tool, ACP2Petri, now supports abstraction mechanism too,

together with the possibility to remove the silent actions, which can be removed

safely. The extensive testing within the process of implementing new functionality

helped us to uncover some hidden imperfections, which have been subsequently

addressed too.

Comparing our method to other integration approaches combining Petri nets and

process algebra we consider the availability of its software implementation to be a

real benefit allowing for its practical utilization. We can mention its successful

application in the field of communication protocols [32, 33], and we believe there

will be further promising areas of application after the current update.

We consider support for handling data as one of future extensions, since processes

can be understood as mechanisms for the data manipulation [16]. There are

process algebras with data support available [12] as well as high-level Petri nets

[22] giving such idea a real outline.

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 197 –

Including the notion of time into the process of transformation would also allow

us to integrate some of the time-enabled process algebras [12] and Petri nets [37,

38] in order to model and study time-critical systems.

Another extension possibility is connected with the integration of additional

formal method allowing for precisely determined and well defined development

process, such as the B method [2]. The method allows for developing a system

specification in form of a collection of components called B-machines with

formally proven properties. It enables to refine an abstract specification into the

concrete realm, which can then be translated into programming language [25].

Some activities have been done [23] in this area and it would be very interesting to

continue in this direction, in order to utilize the new results in the area of software

engineering. It would help to take important steps on the way to generating

implementations of verified software components.

References

[1] Ábrahám, E., Huisman, M. (Eds.): Integrated Formal Methods, 12th

International Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016,

Proceedings

[2] Abrial, J. R.: Modeling in Event-B: System and Software Engineering,

Cambridge University Press, New York, NY, USA, 2010

[3] Bačíková, M., Porubän, J., Lakatoš, D.: Defining Domain Language of

Graphical User Interfaces, Slate 2013: 2nd Symposium on Languages,

Applications and Technologies, June 20-21, 2013, Porto, Portugal. Wadern:

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013 pp. 187-202

[4] Baeten, J. C. M. (ed.): Applications of process algebra, Cambridge

University Press, 1990

[5] Baeten, J. C. M.: A Brief History of Process Algebra, Theoretical Computer

Science 335, 2005, pp. 131-146

[6] Baeten, J. C. M., Weijland, W. P.: Process Algebra, Cambridge University

Press, 1990

[7] Basten, T.: In Terms of Nets: System Design With Petri Nets and Process

Algebra, Eindhoven University of Technology, 1998

[8] Basten, T., Voorhoeve, M.: An Algebraic Semantics for Hierarchical P/T

Nets, Computing Science Report, Eindhoven University of Technology,

1995

[9] Baldan, P., Bonchi, F., Gadducci, F., Monreale, G., V.: Asynchronous

Traces and Open Petri Nets, In Programming Languages with Applications

to Biology and Security, Volume 9465 of the series Lecture Notes in

Computer Science, pp. 86-102, Springer International Publishing, 2015

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 198 –

[10] Best, E., Devillers, R., Koutny, M.: Petri Nets, Process Algebras and

Concurrent Programming Languages, Lectures on Petri Nets II:

Applications, Volume 1492 of the series Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 1998, pp. 1-84

[11] Best, E., Wimmel, H.: Structure Theory of Petri Nets, In Transactions on

Petri Nets and Other Models of Concurrency VII, Volume 7480 of the

series Lecture Notes in Computer Science, pp. 162-224, Springer Berlin

Heidelberg, 2013

 [12] Cranen S. et al.: An Overview of the mCRL2 Toolset and Its Recent

Advances. In: Piterman N., Smolka S. A. (eds) Tools and Algorithms for

the Construction and Analysis of Systems. TACAS 2013. Lecture Notes in

Computer Science, Vol. 7795. Springer, 2013

[13] Desel, J., Juhás, G., Lorenz, R.: Process Semantics of Petri Nets over

Partial Algebra, Proceedings of ICATPN 2000, 21st International

Conference on Application and Theory of Petri Nets, Vol. 1825 of LNCS,

pp. 146-165, Springer-Verlag, 2000

[14] Diertens, B.: Software Engineering with Process Algebra, Ph.D. Thesis,

University of Amsterdam, 2009

[15] Ermel, C., Bardohl, R., Ehrig, H.: Specification and Implementation of

Animation Views for Petri Nets, Proceedings of 2nd International

Colloquium on Petri Net Technologies for Modelling Communication

Based Systems, Berlin, Germany, 2001

[16] Fokkink, W.: Modelling Distributed Systems, Protocol Verification with

μCRL, 2nd edition, Springer, 2011

[17] Fokkink, W.: Introduction to Process Algebra, 2nd edition, Springer-Verlag,

2007

[18] Gorrieri, R., Versari, C.: A Process Calculus for Expressing Finite

Place/Transition Petri Nets, Proceedings of 17th International Workshop on

Expressiveness in Concurrency, EXPRESS'10, Paris, France, 2010

[19] Gorrieri, R.: Language Representability of Finite P/T Nets, In Programming

Languages with Applications to Biology and Security, Volume 9465 of the

series Lecture Notes in Computer Science pp. 262-282, Springer

International Publishing, 2015

[20] Groote, J. F., Keiren, J. J. A., Stappers, F. P. M., Wesselink, J. W.,

Willemse, T. A. C.: Experiences in developing the mCRL2 toolset. In

Software: Practice and Experience, 41(2): 143-153, 2011

[21] Hillah, L. M., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on

the Petri Net Markup Language and ISO/IEC 15909-2, Petri Net Newsletter

Vol. 76, pp. 9-28, October 2009

Acta Polytechnica Hungarica Vol. 15, No. 7, 2018

 – 199 –

[22] Hostettler, S. P., et al.: High-Level Petri Net Model Checking with

AlPiNA. Fundamenta Informaticae, 2011, Vol. 113, No. 3-4, pp. 229-264

[23] Hudák, Š., Zaitsev, D. A., Korečko, Š., Šimoňák, S.: MFDTEPntool - a tool

for the rigorous design, analysis and development of concurrent and time-

critical systems, Acta Electrotechnica et Informatica, Vol. 7, No. 4, 2007,

pp. 5-12

[24] Kollár, J., Pietriková, E., Chodarev, S.: Abstraction in Programming

Languages According to Domain-Specific Patterns, Acta Electrotechnica et

Informatica, Vol. 12, No. 2, 2012, pp. 9-15

[25] Korečko, Š., Sobota, B.: Petri nets to B-language transformation in

software development, Acta Polytechnica Hungarica, Vol. 11, No. 6, 2014

[26] Lodaya, K.: A regular viewpoint on processes and algebra, Acta

Cybernetica 17, 751-763, 2006

[27] mCRL2 language reference, Technische Universiteit Eindhoven,

http://www.mcrl2.org/web/user_manual/language_reference/process.html

[28] Netlab, https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db/

netlab.html

[29] Olderog, E. R.: Nets, Terms and Formulas, Cambridge University Press,

1991

[30] Sobocinski, P.: Representations of Petri net interactions, CONCUR 2010 -

Concurrency Theory, Volume 6269 of the series Lecture Notes in

Computer Science, pp. 554-568, 2010

[31] Šimoňák, S., Peťko, I.: PATool – A Tool for Design and Analysis of

Discrete Systems Using Process Algebras with FDT Integration Support, in

Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010, pp. 59-67

[32] Šimoňák, S.: Verification of Communication Protocols Based on Formal

Methods Integration, Acta Polytechnica Hungarica, Vol. 9, No. 4, 2012

[33] Šimoňák, S., Hudák, Š., Korečko, Š.: Protocol Specification and

Verification Using Process Algebra and Petri Nets, Proceedings of CSSim

2009, pp. 110-114

[34] Šimoňák, S., Šolc, M.: Enhancing Formal Methods Integration with

ACP2Petri. Journal of Information and Organizational Sciences. Vol. 40,

No. 2 (2016) pp. 221-235

[35] Šimoňák, S., Hudák, Š.: Petri net semantics for ACP terms, Acta

Electrotechnica et Informatica, Vol. 4, No. 1, 2004 (in Slovak)

S. Šimoňák et al. Abstraction-enriched Formal Methods Integration

 – 200 –

[36] Wolfgang - Tool Documentation, BPSec group, Department for Telematics,

Institute for Computer Science and Social Studies, University of Freiburg,

Germany. Available at: http://doku.telematik.uni-freiburg.de/wolfgang

[37] Zaitsev, D.: Clans of Petri Nets: Verification of protocols and performance

evaluation of networks. LAP LAMBERT Academic Publishing, 2013

[38] Zhang, X., Yao, S.: Bank switching performance verification with object-

oriented timed Petri nets, Proceedings of the 2013 IEEE 8th Conference on

Industrial Electronics and Applications, ICIEA 2013, Melbourne, Australia,

pp. 1664-1669

