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circumvent the application of the Lyapunov function technique. The foundations of the 
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for the choice of controller parameters, as the response function also depends on the 

approximation model parameter used and the actual behavior of the system under control. 
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case, thinking in frequency image and step inputs is not relevant (it is not advisable to conflict 

a nonlinear system with step inputs), so it does not have a tuning technique applicable to LTI 
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1 Robust Fixed-Point Transformation-based 

Adaptive Controller 

From a control perspective, the exact conditioning of systems with time-varying 

parameters is still a challenge today. Many adaptive control algorithms (Adaptive 

Inverse Dynamics – AID, Model Reference Adaptive Controllers – MRAC, etc.) 

exist today, however, in many cases, their application is difficult, their fine-tuning 

is not trivial, and they demand significant mathematics knowledge, as in most cases 

the conditioning algorithm is based on the Lyapunov stability criterion. 
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Lyapunov in his Ph.D. dissertation defined several stability criteria. Their common 

characteristic is that they are physically based on a Lyapunov function, a 

differentiable function of time, that can be interpreted as a scalar error metric, which 

is not negative and is zero, exclusively in case of zero error, and this function has 

to be held in control (its time-based derivative must not be positive); this is ordinary 

stability. If it is accessible, that this derivative is negative enough so that it can make 

the Lyapunov function to converge to value zero in an infinite amount of time, an 

asymptotically stable system will be created [2] [3]. 

The biggest challenge is to select this function for a given specific control task; most 

of the time it is determined only by “intuitions”. The biggest problem with this is 

that if it cannot be determined, no information about the stability of the system will 

be available. Generally, typical Lyapunov function candidates are available for 

different model tasks, which can be "adapted" to the given task [4]. 

"Fixed-Point Iteration Methods" attempt to offer "alternative" control planning 

methods to circumvent the application of the Lyapunov function technique.            

The essence of the method is to transform the control task, namely, the calculation 

of the control signal to be given by the control system, into the iterative solution of 

a fixed-point problem so that one step of this iteration can be performed during a 

control cycle of a digital controller. Ensuring the convergence of the applied 

iteration is based on Stefan Banach’s fixed-point theorem. The given control task 

can be "transformed" into a fixed-point task in several ways, RFPT ("Robust Fixed-

Point Transformation") offers a possible solution for this. Later, it became clear that 

the operation of this method, is related to the Lyapunov function-based technique 

[5]. 

The foundations of the method were developed in 2009 [6] [7]. RFPT is an iterative 

control method based on the fixed-point theorem of Stefan Banach proved in 1922 

[1]. The procedure uses the available, usually inaccurate dynamic model of the 

system to be controlled to try to implement a trajectory tracking strategy based on 

purely kinetic/kinematic considerations by calculating the control forces. As the 

model used is inaccurate, the force calculated from it does not realize the desired 

motion. By observing the realized motion, the method "deforms" the input of the 

inaccurate model until the realized motion approaches the kinematically prescribed 

one well enough. 

MRAC (Model Reference Adaptive Control) [15] [16] controllers are well suited 

for nonlinear systems. The model is based on tuning control signals instead of 

parameters. The essence of the technique is to compare the dynamic behavior of a 

feedback system to a reference model and control takes place accordingly. RFPT is 

also suitable for this [8] [9] without the use of Lyapunov functions. In the 

knowledge of the inverse of the model to be controlled, the input signals for the 

expected behavior can be determined as follows: 

 rd  - expected behavior 

 u - input signal 
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where 𝑢 = ϕ(𝑟𝑑). The inverse model is usually incomplete, in other words, it gives 

a different result than expected. The controller uses a deformation function to 

modify the input signal to compensate for this deviation. Based on [6] in case of 

SISO system: 

𝐺(𝑟|𝑟𝑑)  ≝ (𝑟 + 𝐾)[1 + 𝐵 tanh (𝐴[𝑓(𝑟) − 𝑟𝑑])] − 𝐾   (1) 

𝐺(𝑟∗
𝑑|𝑟𝑑) = 𝑟∗

𝑑 , if 𝑓(𝑟∗
𝑑) = 𝑟𝑑      (2) 

𝐺(−𝐾|𝑟𝑑) = −𝐾 if 𝑟∗
𝑑 = −𝐾      (3) 

where: 

 r∗
d is the deformed signal constituting the solution to the task 

 𝐾, 𝐴, 𝐵 are the parameters of the controller 

There is usually no specific suggestion for the choice of controller parameters, as 

the response function 𝑓(𝑟) also depends on the approximation model parameter 

used and the actual behavior of the system under control. Based on Banach's 

theorem, we should aim to try to give a contractive mapping of the function 𝐺 in 

the proximity of the solution, i.e. close to 𝑟∗. To do this, the 𝑟-based derivative of 𝐺 

must be reduced to a value less than 1 in absolute value, which would require 

information about the derivative of the function 𝑓(𝑟). 

The value of 𝐵 can therefore be +1 or -1 according to the sign of the derivative of 

𝑓(𝑟), the value of 𝐾 should be chosen as a large number in comparison with which 

the values of 𝑟 in the sum (𝐾 + 𝑟) are small, and the value of 𝐴 must be reduced 

until the iteration becomes convergent. (A very small 𝐴 value causes slow 

convergence and inaccurate adaptability.) 

In addition to the deforming function, a kinematic block forms part of the controller. 

Within the kinematic block, the difference between the realized trajectory and the 

prescribed path is determined as well as the derivative of the error and its integral 

as follows: 

𝑒𝑖𝑛𝑡 = ∫ (𝑞𝑛(τ) − 𝑞(τ))d𝜏
𝑡

𝑡0
      (4) 

(
d

d𝑡
+ Λ)

𝑛+1

𝑒𝑖𝑛𝑡 = 0       (5) 

where:   Λ is a control parameter 

The block diagram of the robust fixed-point transformation-based control is shown 

in the Figure 1: 
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Figure 1 

The block diagram of the robust fixed-point transformation-based control 

The controller contains a total of four parameters: 

 Λ, 𝐾, 𝐴, 𝐵 

There is no specific method for determining and tuning these parameters. The value 

of the parameter Λ ≈ 1/τ is roughly determined by the dynamics of the trajectory 

to be followed. A rapidly changing trajectory with very sluggish dynamics (τ is 

roughly a time constant) cannot be accurately tracked in the first place. If the 

dynamics of the track to be followed changes over time, it may also be necessary to 

tune this parameter. 

Many tuning methods have been developed over several decades, for example, in 

order to set the PID controller correctly e.g. Ziegler-Nichols method (1942), which 

can be applied to processes where it is possible to operate the control cycle at the 

limit of stability, or the Oppelt method, which can be used to determine the 

individual parts based on the response of the process to step input. These methods 

have been developed for Linear Time-Invariant (LTI) dynamic models [13], mostly 

using the frequency image. 

Adaptive RFPT presupposes strongly nonlinear system models in the first place, so 

in this case, thinking in frequency image and step inputs is not relevant (it is not 

advisable to conflict a nonlinear system with step inputs), so it does not have a 

tuning technique applicable to LTI models. 

However, there are a number of optimal search methods that can also be used to 

tune controllers (e.g., PIDs), e.g. the genetic algorithm (GA) [16] [17] [18] [19]. 

Using this method, I developed a possible autotuning method for tuning adaptive 

RFPT. 
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2 Genetic Algorithm 

The genetic algorithm (hereafter GA) is a rather widespread evolutionary strategy, 

the foundations of which were developed in 1975 by John Holland [14]. It has been 

used in many fields in recent decades: graph algorithm, extreme value problem, 

game theory, etc. However, it can also be used in case of tuning regulatory 

algorithms e.g. PIDs. Following a similar principle, I also developed a procedure 

for RFPT auto-tuning. 

GA algorithms strive to ensure that the result of solving a problem is optimal within 

a given error threshold and accuracy. They are suitable for global optimization. 

They are sensitive to local optima, due to their stochastic nature, however, they can 

handle adequately this problem. 

GA is an iterative process based on one initial population. Each population is made 

up of several individuals. These individuals are possible solutions to the problem 

under examination. However, there may be identical solutions among them. 

Individuals can be further broken down into genes. Genes represent the 

characteristics of an individual. In the process, repeatedly, new populations are 

created with each iteration. These are called generations. Each new generation is 

created from the current population using different selection, recombination, and 

mutation algorithms [10]. 

2.1 Individuals 

In the case of GA, the individuals contain possible solutions to the given problem. 

There may even be redundancy between individuals. The first step in the process is 

to design the way individuals are represented. In many cases, an individual is 

described by a sequence of bits, a vector, or some structure. The parameters of the 

representation mode, the parameters giving the properties of the individual, are 

called genes. The algorithm modifies these genes during each iteration based on a 

given strategy. 

2.2 Populations 

The first iteration of the genetic algorithm is based on an initial population.             

The structure of the initial population depends on the particular problem. In many 

cases, it consists of a few hundred or a few thousand individuals. In the case of an 

optimum search problem where the location of the optimum can be guessed, this is 

taken into account when constructing the initial population. In this case, more 

individuals are created in the search area around the assumed location, otherwise, 

the individuals are evenly distributed. The reason for this is that by helping GA, the 

chances of finding a global optimum can be increased and the search time for the 

optimum can be reduced. 
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With each iteration, new populations are created from the populations. These are 

called generations. A generation is created using the current population, based on 

different selection, recombination, and mutation algorithms. Each individual is 

described by a “Fitness Function”. During selection, aptitude is determined by this 

function. 

2.3 Fitness Function 

The individual goodness of each population is determined by a fitness function.    

The better this value, the closer the solution approximates the expected result, i.e. 

the global optimum. One of the most difficult tasks is to determine this function.    

It is one of the main building blocks of GA. It must be chosen with great care for 

each problem. During each iteration, when new generations are created, individuals 

with better fitness values are more likely to enter the new population (this may 

change depending on the selection procedure). 

2.4 Selection 

During selection, the individuals the genes of which we would like to be further 

inherited are selected from the current population based on their aptitude and 

quality. This is one of the conditions for the algorithm to converge towards the 

global optimum during the iterations. Selected individuals are called parents. There 

are several strategies for selecting the best individuals. These include random 

selection, fitness proportional selection, competitive, etc. The first two of these are 

presented. 

2.5 Random Selection 

It is less effective, however, it is one of the simplest procedures. In a given iteration, 

the parents are randomly selected from the given population with the same 

probability. Considering the Darwinian theory, this solution is not the most obvious, 

because in this case, the basic idea is that during the various developments, the weak 

individuals become extinct, and the strongest and most capable ones continue to 

reproduce. Regardless of fitness, all individuals are equally likely to be parents, thus 

further reproducing their genes, whether good or bad. The method can be further 

refined in order to be improved. With each iteration, it can be taken into account 

that if an individual has already been selected, it cannot participate as a parent later. 

2.6 Fitness Proportional Selection (Roulette Method) 

The method is based on the fitness function. A parent is selected from the current 

population in a way that the probability of selecting individuals in each population 
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is proportional to the fitness value. The same instance can be re-selected at each 

step. The chance of selection for a given individual is: 

𝑝(�̂�) =
𝐹(�̂�}

∑ 𝐹(𝑒)𝑒∈𝑝
        (6) 

where 𝐹(𝑒) means the fitness value of individual 𝑒. The roulette wheel method is 

usually used for selection. The higher the fitness value of a particular individual, 

the larger the slice you get from the wheel. Rotate the wheel to select a perimeter 

point. The higher the fitness value of an individual, the more likely it is to be 

selected by this method. 

2.7 Recombination 

After selection, the first step in creating new individuals is recombination. Upon 

recombination, a new individual is created from the selected parents. The new 

individual inherits the genes of the parents. This is called a crossover. There are 

several crossover methods, e.g. 1-point crossover, uniform crossover, intermediate 

recombination, heuristic crossover, etc. 

2.8 Single-Point Crossover 

In a single-point crossover, an individual is cut at a random point. The parent shall 

have 𝑛-genes and 𝑖 will be a random number where 1 ± 𝑖 < 𝑛. The new individual 

inherits its genes from one parent from 1 to 𝑖 and from the other parent from 𝑖 + 1 

to 𝑛. In this case, the parents are divided into two parts, the individual parts being 

transferred one by one to the new individual. Continuing with the method, it is 

possible to cross the two parents not only at one but also at several points. From one 

parent, 𝑛 genes are selected, which are transferred to the new individual, and then 

the missing genes are inherited from the other parent. 

2.9 Smooth and Intermediate Crossover 

Smooth and intermediate crossovers are based on the same logic. Each gene in the 

new individual will be one of the same genes in the parents. Each gene is selected 

with a 50% chance, i.e. half of the genes are exchanged between parents. In the case 

of an intermediate crossover, the value of the inherited gene changes, the value of 

which is described by a function. The latter method tries to achieve its larger variety. 

There is no general method for selecting individual crossover operators. In each 

case, it needs to adapt to the task. In most cases, each gene is independent. If there 

is a relationship between the genes, a special “intelligent operator” must be used. 
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2.10 Mutation 

The search space is made possible by the mutation operator. However, this operator 

should be used with caution. If the genes of an individual are heavily modified, 

traits inherited from parents with good fitness values can be impaired. Depending 

on the data describing the individuals (bit sequence, vector, structure), there are 

several mutation operations (random element per gene or element permutation, 

inversion operator, neighborhood mutation, sequential mutation, etc.). It is very 

important that during the mutation, the operator should only change the value of the 

gene to such an extent that it does not leave the search space. For many generations, 

if the algorithm approaches the optimum, convergence to the optimum may fail, if 

the mutation rate is too high. 

2.11 Pseudocode of GA Algorithm 

 

As a first step, the parameters are set and produce the initial population. The number 

of individuals in the initial population depends on the solution of the problem.      

That can mean a number from a few hundred to a few thousand individuals.            

The individual individuals, as I mentioned earlier, can be bit sequences, vectors, or 

some structures. In the next step, each individual is evaluated based on the fitness 

function. The algorithm is an iteration process. The exit condition of the process 

varies. The condition is usually met when a predetermined “error threshold” or 

iteration (generation) is reached. It is necessary to limit the iteration steps because 

there may be a case where the GA gets stuck and does not converge towards the 

optimum. Selection, recombination, and mutation take place within the cycle core. 

If the exit condition is met, the process stops, and the individual with the best fitness 

value in the last population is selected. 
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3 A Demonstration of the Automatic Tuning Method 

for GA-based Adaptive RFPT Controller 

Parameters 

There is no exact tuning method for selecting the parameters of the adaptive robust 

fixed-point transformation-based control algorithm. The task of the parameters of 

the kinematic block and the deformation function in the control circle detailed in 

Chapter 1 is known, however, the choice of the values of each parameter can be 

determined experimentally only in a way supported by observations.                          

The expectation for a control task in most cases is to follow a prescribed trajectory 

with the smallest possible error. Tracking error can be minimized by the optimal 

selection of each parameter. For RFPT, this means setting four parameters 

(Λ, 𝐾, 𝐴, 𝐵). The process of the developed method has been extended by one step 

compared to the genetic algorithm: 

 

The method is based on a simulation block. Within the simulation block, the RFPT 

control block visible in figure is realized. The block consists of the following main 

components: 

 Kinematics block 

 Deforming function 

 Approximating function 

 Exact model 

During the simulation, the goal for the system is to follow the predefined trajectory 

as accurately as possible. Genetic algorithm-based tuning uses the result of this 

simulation block. 
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3.1 Chromosome, Representation 

The genotype assigned to each solution is made up of four numbers, i.e., an 

individual has four genes. The alleles assigned to the genes correspond to some 

parameters of the RFPT (Λ, 𝐾, 𝐴, 𝐵). The phenotype generating algorithm is 

provided by none other than the RFPT simulation block using the genotype. 

3.2 Setting Strategic Parameters 

After chromosome representation, the first step is to determine the initial 

population. The parameters of the individuals in the initial population are 

determined in consideration of the search space. Each allele, as an allele within a 

different range, is given a value by generating evenly distributed random numbers. 

Each domain is as follows: 

 Λ: 0.1 < 𝑥 < 6 

 𝐾: 1𝑒2 < 𝑥 < 1𝑒13 

 𝐴: 1 > 𝑥 > 1𝑒 − 6 

 𝐵: [−1,1] 

As the parameter space is too large for the initial population, except for Λ, the 

possible values can only be multiplies of 10. There is no specific method for 

determining population size [11]. Most of the time it depends on the problem.           

In this case, the simulation was performed with populations of 50 to 450 individuals. 

Each new generation is created from the elite of the current population. I selected a 

10% elite rate [12]. 

3.3 Crossover and Mutation 

The first step in the crossover is to choose the parents. The parents come from the 

elites. I chose single-point crossover as the crossover operator. Each parent has 4 

genes. I used a randomly distributed random number generator to determine the 

point of intersection. 𝑃1 = [Λ1, 𝐾1, 𝐴1, 𝐵1] and 𝑃2 = [Λ2,  𝐾2, 𝐴2, 𝐵2], as well as 𝐶𝑝 

should be a random number generated in the range [1, 2, 3, 4]. If for instance 𝐶𝑝 =

2, then 𝐶 = [Λ1, 𝐾1, 𝐴2, 𝐵2]. The last strategic parameter is the choice of mutation 

rate. As in the case of the initial population formation, I limited the values of each 

parameter, the mutation rate helps to broaden the search space again. I used a 

random mutation per gene. 6% of all genes in the population as well as the value of 

each gene can be modified proportionately by generating a random number between 

±10%. 
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3.4 Stopping Criteria 

The generic algorithm is an iterative method. At the end of each iteration, it should 

be examined whether it is worth continuing the optimal search or not. Usually, the 

stop condition consists of two parameters, an expected fitness value, and a 

maximum iteration number. Optimally, the first condition is met, in which case the 

individual with the best fitness value in the last population provides the best solution 

to the problem. However, due to the heuristic nature of the algorithm, this is not 

guaranteed at all. In the case of the autotuning method developed by me, it is 

difficult or impractical to set a fitness value as a stopping criterion. In the case of 

control, the goal is to minimize trajectory tracking error or even reduce it to zero. 

For the latter physical systems, it can be concluded that it will never be satisfied. 

Since in reality, the interfering signals are limited, e.g. a system displaced from rest 

would have to be displaced with an unrealistically large intervention signal and then 

slowed down to follow the prescribed trajectory immediately. As this is not met, 

there will always be a tracking error. I determined only the maximum iteration 

number for the exit condition of the genetic algorithm. To determine this maximum 

number of iterations, I performed several tests, which I will detail in a later chapter. 

3.5 Fitness Definition 

The aptitude of each specimen is described by the fitness function. The global 

optimum of this function is to be found. In the case of GA-based RFPT tuning, the 

fitness function is determined from the results of the simulation performed for each 

iteration. The goal is to minimize tracking error, ideally to zero. Achieving the latter 

is impossible, the reason for which has already been explained in the previous 

chapter. However, minimizing the error is a realistic goal. 

It can be assumed that the smaller the error integral, the more accurately the system 

follows the required trajectory. However, as with most control algorithms (e.g., 

PID), the system can oscillate or even immediately diverge to infinity due to the 

selection of unsuitable parameters. As the genes of the specimens in the initial 

population are determined by evenly distributed random numbers, the latter case is 

also highly likely to occur. However, this does not mean that during further 

mutation, a specimen that initially provides an erroneous simulation result cannot 

converge to a good solution. In the articles below [23] [24], the authors used the 

following performance indicators to minimize the error generated during the 

simulations performed with each specimen: 

 MSE:  Mean of the Squared Error 

 IAE:  Integral of the Absolute Magnitude of the Error 

 ITAE:  Integral of Time multiplied by Absolute Error 

 ISE:  Integral of the Squared Error 

 ITSE:  Integral of Time multiplied by the Squared Error 
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𝑀𝑆𝐸 =
1

𝑡
∫ (𝑒(𝑡))2𝑑𝑡

𝑡

0
       (7) 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)|𝑑𝑡
𝑡

0
        (8) 

𝐼𝑇𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡

0
       (9) 

𝐼𝑆𝐸 =
1

𝑡
∫ 𝑒(𝑡)2𝑑𝑡

𝑡

0
                  (10) 

𝐼𝑇𝑆𝐸 =
1

𝑡
∫ 𝑡 ∗ 𝑒(𝑡)2𝑑𝑡

𝑡

0
                  (11) 

Based on the performance indicators, the actual fitness value is determined based 

on the following equation [24] [25]: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 =  1/ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥                (12) 

The same performance indicators and fitness value calculations were used to tune 

the RFPT. 

3.6 Dynamic Models used in Testing 

I tested the tuning method using the following three nonlinear SISO type dynamic 

models: 

 Van der Pol Oscillator 

 Duffing Oscillator 

 Inverted pendulum 

The dynamic equation of the Van de Pol Oscillator is [20]: 

𝑚�̈� − μ(1 − 𝑞2)�̇� + ω0
2𝑞 + α𝑞3 + λ𝑞5 = 𝑔               (13) 

where, the values of each exact model parameter are: 

 𝑚 = 1.2 

 μ = 0.4 

 ω0 = 0.2 

 α = 4 

 λ = 0.3 

The dynamic equation of the Duffing Oscillator is [21]: 

�̈� + σ�̇� + α𝑥 + β𝑥3 − γ cos(ω𝑡) = 𝑢                (14) 

, where the values of each exact model parameter are: 

 α = 1 

 β = 5 

 σ = 0.02 
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 γ = 8 

 ω = 0.5 

The dynamic equation of the Inverted Pendulum [22]: 

 (𝑚 + 𝑀) sin2 θ 𝑙θ̇ + 𝑚𝑙θ2 sin θ cos θ − (𝑚 + 𝑀)𝑔 sin θ = −𝐹 cos θ             (15) 

Where the values of each exact model parameter are: 

 𝑚 = 0.8𝑘𝑔 

 𝑀 = 1𝑘𝑔 

 𝑙 = 0.6𝑚 

The number of parameters of the approximating models (approx. model) within the 

adaptive RFPT control block was identical during each test, only the values of the 

parameters were modified compared to the exact model. 

4 Experimental Results 

The simulation was implemented in MATLAB software. I divided the simulation 

into an inner and an outer block. Inside the inner block is the RFPT block, which 

contains the kinematic block and the deformation function, as well as one of the 

exact and approximated models presented in Chapter 1. During each test, the 

controller must follow a sinusoidal trajectory. The genetic algorithm is built around 

the inner block. The genetic algorithm performs the following main steps for a given 

population number as shown in Chapter 3: 

 Fitness calculation 

 Selection 

 Crossover 

 Mutation 

Only the iteration number was specified as the exit condition. To determine the 

optimal population size and the maximum number of iterations, I performed several 

measurements based on the following parameters: 

 Population size: 50, 60, 70, ... 450 

 Maximum iteration: 100 

Additional parameters of GA: 

 Elite rate: 0.1% 

 Population mutation rate: 0.06% 

 Gene mutation rate: 10% 
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For each population, I performed 100 tests, a total of 41 × 100 measurements.      

The measurements were performed on the same computer. In the following figures, 

I used the average of the measurements. 

Figure 2 shows the integral of the error associated with the simulation of each 

population. The goal is to tune the RFPT so that during the simulation, the error 

integral is minimized (MSE, IAE, ITAE, ISE and ITSE produces similar results). 

The lower this number, the more accurately the controller works. It can be seen that 

after the 50th iteration no significant change occurs, for all population sizes RFPT-

tuning is successful, the integral of the error approaches zero. As GA is heuristics-

based, the larger the population, the more likely it is to reach the number of 

iterations sooner, after which tuning is no longer necessary. However, when 

choosing a population size, run time must also be taken into consideration, which 

increases in proportion to the size of the population. 

 

Figure 2 

The integral of the error associated with the simulation of each population 

Figure 3 (a) shows the process of tuning. In the case of the initial population, the 

system will most likely include specimens that may for instance lead to oscillations, 

but also, of course, those that already have the appropriate genes (RFPT parameters) 

at the beginning. Specimens with inappropriate parameters were not plotted, as the 

error rate was unrealistically large at the outset, so it was not used for plotting, but 

they were, of course, used for the performance of the genetic algorithm. 
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(a) ITAE simulation result (b) Settling time and overshoot 

(details of Fig. (a)) 

Figure 3 

Integral of Time multiplied by Absolute Error of the Van der Pol Oscillator 

Figure 3 (b) shows that the trajectory tracking error decreases during tuning, at each 

time the controller is able to intervene faster, thus settling time and overshoot 

become smaller. However, the fact that in physical reality the intervening forces are 

limited should not be ignored. The further these values decrease, the greater the 

intervention signal required! This must be taken into consideration during tuning 

and a threshold value must be set for the magnitude of the interfering signal. 

Figure 4 represents the result of the operation of the successfully tuned controller. 

The system had to follow a sinusoidal trajectory. The nominal trajectory is shown 

with a blue line while the tracking trajectory with a dashed red line. The nominal 

trajectory 𝑞𝑁(𝑡) = 𝐴0 sin(ω0𝑡), 𝐴0 = 3 and initial state 𝑞0 = 0, 𝑞0̇ = 0 

 

Figure 4 

Trajectory tracking of the Van der Pol oscillator under tuned RFPT control 
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Figure 5 

Trajectory tracking error of the Van der Pol oscillator under tuned RFPT control 

Figure 6 shows the phase trajectory; Figure 7 shows the total control force while 

tracking of the Van der Pol oscillator under tuned RFPT control. 

 

Figure 6 

Phase trajectory tracking of the Van der Pol oscillator under tuned RFPT control 

 

Figure 7 

The total control force under tuned RFPT control 
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Conclusion 

Based on the tests, it can be stated that the genetic algorithm is suitable for tuning 

the RFPT. Unlike PID, in the case of RFPT, there are no well-established, exact 

tuning methods, only individual parameters can be inferred from observations. 

Tuning can also be done manually, by monitoring the behavior of the system. 

However, the search area for each parameter is very large, it is possible that the 

right values can only be found after several attempts, however, this is not 

necessarily optimal. Thanks to GA, the whole operation can be automated, 

accelerated, and tuned correctly, under the right exit conditions. During the tests,     

I performed several measurements and tested the method on several dynamic 

models. In all cases, the controller was successfully tuned for the tracking error to 

nearly approximate zero. 
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