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Abstract: This paper discusses the estimation of the processes, that can be described by the 

first-order plus dead time, system model. Two methods of parameter estimation are 

proposed in this paper: the closed-loop under the proportional controller step test and the 

relay feedback test. The standard symmetrical relay and the preload relay, were used with 

the Relay feedback. Based on the data, from the recorded response, the parameters of the 

FOPDT model were estimated, by means of manual calculation using the Lambert W 

function. The produced results were compared to the results using other methods, in the 

current literature. Illustrated results were shown through a simulation of several different 

processes, as well as, with the example of the linearized model, of the pupillary light reflex 

system. 
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1 Introduction 

The main goal of feedback management is for the managed variable to be equal to 

or at least to deviate as little as possible from the desired value. To create an 

appropriate controller, which would satisfy all the requirements, it is necessary to 

understand the behavior of the controlled object in time, i.e. it is necessary to 

understand the dynamic characteristics of the controlled process. The majority of 

methods used for designing a controller demand a mathematical process model 

given in a certain form [1]. 

Taking into account that processes have different dynamic behavior, they can be 

described by means of different mathematical models. Models can be described in 

various ways: with the set of algebraic equations, regular differential equations, 

non-linear differential equations, etc. The mathematical model needs to portray 
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the process’ dynamics for its analysis to be comprehensive and accurate. Adequate 

process control cannot be based on a poor mathematical model, as this would 

result in a poor design of different controllers, for example: The Linear Quadratic 

Regulators (LQR) [2], PI controllers [3], PID controllers [4], etc. Choosing an 

inadequate controller will not only result in unsatisfactory performance values of 

the controlling system but there is also a chance that the closed-loop control 

system will become unstable. 

On the other hand, there are many processes that we are not acquainted with well 

enough, processes or systems that are affected by changes in the environment, as 

well as processes that show highly nonlinear behavior. Difficulties that occur in 

modeling and identification for this type of cases can be found for example:         

in robotics problems of modeling and identification of inertia and motor 

parameters for the PUMA 560 robot [5], difficulties of friction modelling and 

identification in precision positioning systems [6], parametric sensitivity in 

chemical reaction systems lead to large change in the temperature of the system 

[7]. For this reason, it is illusory to expect that in these practical cases a 

satisfactory, sufficiently precise model of a process or system can always be 

obtained. 

In the past, the wide classes of nonlinear, adaptive, robust and intelligent 

controllers were developed for this type of systems. Research in adaptive control 

began in the middle of the last century [8] and was developed into an excellent 

control tool for many practical applications, e.g. adaptive fuzzy control was used 

for an uncertain teleoperation system [9]. The robust control approach has been 

applied in small turbojet engines [10]. Two sliding mode observers tracking 

control are used for robotic manipulators with uncertain kinematics and dynamics 

and unknown torques in [11]. Dynamic analysis and intelligent control (fuzzy 

logic, neural network, genetic algorithm) techniques for flexible manipulators for 

the time period 1970-2013 are summarized in [12]. Non-linear model predictive 

control has been used to avoid thermal runaway in semi-batch reactor [13].         

For manipulating the feed rate in fed-batch fermentation processes different 

control strategies can be applied. In [14] was analyzed adaptive control, model 

predictive control, artificial neural networks and fuzzy control strategies applied in 

fed-batch fermentation processes. 

Apart from the usage of mathematical models for the description of process 

behavior in the industry, using mathematical models, processes in other fields can 

be described as well. For example, the dynamics from the light amount reaching 

the retina to the pupil diameter is described with first-order plus time delay model 

in [15], the differential equation of the extended tumor growth model is given in 

[16], the pupil reflex to light has been considered as servomechanism in [17-19], 

the major features of cell growth and cell cycle in Saccharomyces cerevisiae is 

described by a coarse-grain model in [20], etc. 
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There exist different identification techniques used for determining the 

mathematical model of a dynamic system [21]. Apart from the usage of 

mathematical statistics, to process the collected data of a certain process, there can 

be found two other methods for the estimation of system model parameters in 

literature. For example, the neuro-fuzzy state-space model obtained from 

experimental data acquired from a real robotic arm [22], Kohohen’s self-

organizing maps, examinations of the classification of droplet epitaxial 

nanostructures [23], vehicle dynamic functions of the cars are obtained from its 

technical data [24], etc. 

It is well known that for a Linear Time-invariant (LTI) system, that by, using the 

Laplace transformation, differential equations can be transcribed into algebraic 

equations, in other words, the dynamic characteristics of a process can be 

described using the transfer function. Most physical processes exhibit nonlinear 

behavior, but for great number of them the linear time invariant (LTI) models with 

time delay provide satisfactory model. Furthermore, a great number of controller 

configuration techniques is based on the system models whose transfer functions 

are of a lower order, such as first-order plus dead time (FOPDT) model, unstable 

first-order plus dead time (unstable FOPDT) model, second-order plus dead time 

(SOPDT) model, integrator plus dead time (IPDT) model, etc. The identification 

process techniques used for obtaining the previously mentioned lower-order 

system can be classified into two categories: the time-domain approach, examples 

[25]-[28], and the frequency domain approach, examples [29-33]. 

This paper considers parameter estimation of the FOPDT model. Two methods are 

suggested for the parameter estimation: The closed-loop under the proportional 

controller step test and the relay feedback test. The transcendental characteristic 

system equation in both suggested methods is solved by the usage of the Lambert 

W function (LWF) [34] [35]. The Lambert W function can be evaluated using the 

open source software the LambertW_DDE Toolbox [36]. Validation of the 

received FOPDT system model is done using the mean absolute error (MAE) and 

the root mean squared error (RMSE) index. 

With the closed-loop under the proportional controller step test method, the step 

change is added to the setpoint. From the recorded response, to apply the 

suggested method, it is necessary to measure five parameters that are going to be 

used in the estimation of all the FOPDT model parameters [27] [28]. This method 

is illustrated in the example of the linearized model of the pupillary light reflex 

system. 

The other suggested method for parameter estimation of the FOPDT model uses 

the standard symmetrical relay feedback test as well as the preload relay feedback 

test. In order to use this suggested method, it is necessary to measure the values of 

the amplitude and the oscillation period of the received response [34]. 

The results were compared to the results received using other methods from 

current literature. The quality of the suggested methods of parameter estimation of 
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the FOPDT model was compared by considering the original system model 

response and the received FOPDT models within the time and frequency domain. 

This paper consists of several sections. The parameter estimation process of the 

FOPDT model using the closed-loop under proportional controller step test is 

given in Section 2. Section 3 portrays the parameter estimation process of the 

FODT model using the relay feedback test. Section 4 portrays the example of 

estimation with the linearized model of the pupillary light reflex system, while 

Section 5 presents the Conclusions and compares the results of the suggested 

methods, to the methods given in the current literature. 

2 Parameter Estimation of FOPDT Model using 

Closed-Loop under Proportional Controller Step 

Test 

2.1 Theoretical Background 

The transfer function of FOPDT model, where K is the gain, T is the time constant 

and L is dead time, is: 

( )
1

LsK
G s e

Ts




  (1) 

The closed-loop transfer function W(s) of the FOPDT model under the 

proportional (P) controller, is: 

( )( )
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where y(s) is the Laplace transform of the controlled output, r(s) is the Laplace 

transform of the reference step input amplitude R and Kp is the gain of the 

proportional controller. 

Substituting the value G(s) given in (1) into the equation in (2), it can be 

concluded that the closed-loop transfer function: 

( )
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
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  (3) 

It is well known that the closed-loop poles present the solution to the characteristic 

system equation. In this particular case, the characteristic equation of the closed-

loop system is transcendental: 
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1 0Ls
pTs K Ke     (4) 

The characteristic system equation, given in (4), because of its transcendental 

nature has an infinite number of solutions, therefore W(s) has an infinite number 

of closed-loop poles, which can be calculated using the Lambert W function: 

1 1
( )

L
p T

k k

K K
s W Le

L T T
     (5) 

where the sk stands for k number of the closed-loop pole and k stands for an 

ordinal number of the Lambert W function branch. 

It has been seen in literature, among which are [35] [37], that we can get the 

rightmost closed-loop poles if the ordinal number of the Lambert W function 

branch is equal to 0 or -1. Taking into account that rightmost closed-loop poles 

greatly affect the dynamic characteristics i.e. the system response, for the 

suggested system parameter estimation method, it is enough just to consider them. 

The rightmost closed-loop poles (s1 and s2), are received from the expression 

given in (5), for k=0 and k=-1: 
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On the other hand, the closed-loop transfer function W(s), after the approximation 

of the dead time from the denominator, can be considered as the second-order plus 

dead time system model with dynamic numerators as shown in [27]. In that case, 

closed-loop poles, where ξ is a damping ratio and ωn is natural frequency, are: 
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From equations (6) and (7) we get: 
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R. Gerov et al. Parameter Estimation Methods for the FOPDT Model, using the Lambert W Function 

 – 146 – 

2.2 Algorithm for Parameter Estimation of the FOPDT Model 

Step 1: By choosing the appropriate proportionate regulator Kp gain, we can 

ensure that the underdamped closed-loop step response is obtained. A typical 

response is shown in Figure 1. 

 

Figure 1 

Underdamped closed-loop step response of the FOPDT model under proportional control 

Step 2: From the received response, read the values Ymax, Ymin, Yss, R, Tmax, Tmin, 

necessary for the application of the suggested estimation [18], as shown in Fig. 1. 

Step 3: Calculate the damping ratio ξ, natural frequency ωn, and gain K of the 

FOPDT model using equations (9), (10) and (11), respectively: 
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Step 4: Substitute the received values of damping ratio ξ, natural frequency ωn, 

and gain K of the FOPDT model in the two equations given in (8). Solving the 
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system of two equations with two unknowns T- the time constant and L-the dead 

time, all the parameters of the FOPDT model have been estimated. 

Step 5: Validate the received FOPDT model using the Mean Absolute Error 

(MAE) and the Root Mean Squared Error (RMSE) indexes in the time domain, 

where y is the output of the real system and ym represented output of FOPDT 

model. 

0
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  (12) 

Other performance indexes known to literature can also be used for the validation 

of the received FOPDT model. 

3 Parameter Estimation of the FOPDT Model using 

the Conventional Symmetrical Relay and the 

Preload Relay Feedback Test 

3.1 Theoretical Background 

It is known that the relay belongs to the group of nonlinear elements where static 

characteristics are described by mathematical models whose complexity depends 

on the type of nonlinearity. Ambiguous nonlinearities, e.g. relays with hysteresis, 

are described by functional dependence: 

( )
( ) ( ),

de t
u t F e t

dt

 
  

 
  (13) 

where u(t) is the relay output, e(t) is the output error (the relay input) and ė(t) is 

the derivative of e(t). With unambiguous nonlinearities, for example, the ideal 

relay,  ė(t)=0. 

Block diagram control system used for the conventional relay feedback test, where 

r denotes the desired variable (the set-point), y the controlled variable (the process 

output), u the manipulated variable (the relay output), and e the output error, is 

shown in Figure 2. 

Symmetrical (unbiased) relay and asymmetrical (biased) relay feedback tests are 

used in the identification process procedure. Techniques based on relay feedback 

identification methods can be classified into three groups: the describing function 
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method, the use of frequency response estimation for model fitting, and the curve 

fitting approach. The methods used in the paper are the unbiased relay method and 

the describing function method. 

The describing function of the relay represented the complex ratio of the 

fundamental harmonic relay output to the sinusoidal relay input. 

 

Figure 2 

Block diagram of a conventional relay feedback test 

The describing function for the unbiased relay with hysteresis N(A) [33], where h 

is the relay amplitude, ε is the switch hysteresis and A is the amplitude of the 

output oscillations, is: 

2arcsin
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4 4
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The describing function of the relay is a transfer function of a relay for a given 

frequency. The describing function of the ideal relay is received for the expression 

in (15) for ε=0. The magnitude of the ideal relay and unbiased relay with 

hysteresis is equal. As opposed to the ideal relay where the phase is zero, the 

unbiased relay with hysteresis introduces the phase shift. 

It is well known that under an unbiased relay test (the set-point r(t)=0) the process 

response moves into the limit cycle. The ultimate gain Ku is approximately equal 

to: 

4
u

h
K

A



  (16) 

The ultimate frequency ωu, where Pu ultimate period, is equal to: 

2
u

uP


    (17) 

The process in Figure 2, is described by the transfer function of the FOPDT model 

G(s) with the parameters given in (1) and the relay described by the transfer 

function N(A) given in (15). Characteristic system equation shown in Figure 2 is: 

1 ( ) ( ) 0N A G s    (18) 
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Substituting the expression for G(s) given in (1) into equation (18), as well as, 

using some mathematical arrangement, the following is obtained: 

1 ( ) 1
( )
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T
k k

N A K
s W Le

L T T
     (19) 

Taking into account that the process response from Figure 2 moves into the limit 

cycle under unbiased relay, then there exist two conjugated complex closed-loop 

poles with real parts equal to zero and imaginary parts ±jωu. These poles are 

rightmost closed-loop poles which can be calculated using the equation (19) for 

k=0 and k=-1, therefore: 
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If the process response moves into the limit cycle, for ultimate frequency ωu, then: 
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If gain K>0. Since the expression under the root in the denominator of the 

equation (21) is always greater than zero, from (21) it can be seen that: 
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Substituting the expression (22) into (20), the following is produced: 
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For the ideal relay ε=0, equations (23) are reduced to: 
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Depending on the type of relay used, the FOPDT model, the time constant T, and 

the dead time L are received by solving the system equations given in (23) or (24). 

The gain of the FOPDT model, not depending on the type of relay, can be 

calculated using equation (25): 

 
2

1
4

u
A

K T
h


    (25) 

It is well known that by using the unbiased relay feedback test, an error occurs in 

the estimation of the ultimate gain Ku, that is, in the magnitude of the describing 

function of the relay. For this reason, the estimated value of the gain of the 

FOPDT model, received using equation (25), also deviates from the true value. 

Value estimation of the gain K is better done using equation (11), for the closed-

loop under proportional controller step test where Kp<Ku or using the preload relay 

[33]. 

The preload relay can be considered a relay where the proportional controller is 

connected in parallel to the ideal relay. The gain of the proportional controller is 

less than the relay amplitude h, and is equal mh, where m<0.5. The describing 

function of the preload relay is: 

4
( )

h
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A
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The gain K of the FOPDT model, using the preload relay feedback test, can be 

calculated using equation (27) as follows: 

 
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
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In methods known to literature that use the unbiased relay feedback test for the 

FOPDT model parameter estimation, it is necessary to know either the gain K or 

the dead time L, and the other two parameters are received by solving the two 

equations. Using the suggested method, it is not necessary to estimate the dead 

time of the FOPDT model from the limit cycle process response, nor is it 

necessary to know the gain K of the FOPDT model. It is only necessary to 

measure the amplitude of the output oscillations A and the ultimate period Pu. 

3.2 Algorithm for Parameter Estimation of the FOPDT Model 

using the Relay Feedback Test 

Step 1: Use the unbiased relay feedback test as in Figure 2. The reference input 

r(t), the ideal relay output u(t), and the process response y(t), is shown in Figure 3. 
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Step 2: From the received response, read the following values: the process 

response amplitude A and the ultimate period Pu, for the applied value the relay 

amplitude h, in the manner shown in Figure 3. 

Step 3: Calculate the ultimate frequency ωu using equality in (17). 

Step 4: Substitute the received value of the ultimate frequency ωu into the system 

of two equations (24). Solving the system equations, the time constant T and the 

dead time L of the FOPDT model are estimated. 

 

Figure 3 

Limit cycle response of FOPDT model under ideal relay feedback test 

Step 5: Using equation (25) calculate the gain K of the FOPDT model. 

In this way, all parameters of the FOPDT model using the ideal relay feedback test 

were estimated. With the unbiased relay with the hysteresis feedback test, the only 

difference is in Step 4 of the suggested algorithm where for the estimation of the 

time constant T and the dead time L of FOPDT model equations in (23) are used. 

With the preload relay feedback test in Step 5 of the suggested algorithm, the gain 

K of the FOPDT model should be calculated using equations in (27). 

Step 6: This step can be applied to achieve better estimation results of the gain K 

of the FOPDT model. Use the closed-loop under the proportional controller step 

test for Kp<Ku, as explained in the previous Chapter. From the received response 

read the steady-state value of the output Yss. For the known value of the amplitude 

step input R, the gain K should be estimated using the equation in (11). 
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4 Simulation Study 

4.1 Simulation Study using Closed-Loop under Proportional 

Controller Step Test 

The transfer function of the linearized model of pupillary light reflex [17]-[19], 

which represents the ratio of the change of flux due to pupil-area alteration IrefA 

and change of flux due to external light variation ArefI, is given as the third-

order plus time delay model: 

0.18

3 3

( / ) 0.16
( )

( / ) (1 ) (1 0.1 )

Ds s
ref ref

ref ref

I A A A Ke e
G s

A I I I s s

  
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   
  (28) 

Step 1:  Closed-loop unit step response with gain Kp=5 and the reference step 

input amplitude R=1 

Step 2: From the received closed-loop step response the parameters are: 

Ymax=0.6330, Ymin=0.36805,Yss=0.4444, R=1, Tmax=0.6735, Tmin=1.1165 

Step 3:  Calculated parameters from equations (9 thru 11) respectively are: 

ξ=0.7892, ωn=1.7051, the identified FOPDT model gain K=0.16 

Step 4:  From equation (8) the identified FOPDT model time constant and dead 

time are: T=0.2014, L=0.3169 

Step 5:  Model validation in time domain (simulation time is 2s): 

MAE=0.00308, RMSE=0.00513 

The received FOPDT was compared to the FOPDT model received using the 

Half-rule technique [26] with the following parameters K=0.16, T=0.15 and 

L=0.33. Model validation in time domain for Half-rule FOPDT model (simulation 

time is 2s): MAE=0.00240, RMSE=0.00548. 

Unit step response of the linearized model of pupillary light reflex, proposed 

identified FOPDT model and Half rule FOPDT model is shown in Figure 4. 
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Figure 4 

Unit step response of the linearized model of pupillary light reflex and identified FOPDT models 

Nyquist fitting of identified FOPDT models for a linearized model of the pupillary 

light reflex is shown in Figure 5. 

 

Figure 5 

Nyquist fitting of identified FOPDT models for a linearized model of the pupillary light reflex 

The gain margin of a linearized model of the pupillary light reflex is GM=21.3 dB 

and phase crosover freqency ω=7.13 rad/s. The same parameteres for the proposed 

FOPDT model are: GM=20.6 dB, ω=6.92 rad/s and for Half-rule FOPDT models 

are: GM=19.2 dB, ω=7.05 rad/s. 
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Based on the given characteristics of the FOPDT model in the time and frequency 

domain, it can be concluded that the Half-rule FOPDT model represents the 

characteristics of the linearized model of the pupillary light reflex in time domain 

more accurately, while the suggested FOPDT model provides better results in the 

frequency domain. 

Comparison results of the suggested parameter estimation method of the FOPDT 

model with methods from literature are considered in [28] for the following 

examples: first-order plus time delay system, eight-order plus time delay system 

and non-minimum-phase time delay system. 

4.2 Simulation Study using Relay Feedback Test 

Parameter estimation of the FOPDT model is given in the example of the Wood-

Berry distillation column model (WB column) [38] as follows: 

12.8
( )

16.7 1

sG s e
s




  (29) 

Step 1:  The unbiased relay feedback with the relay amplitude h=1 

Step 2:  From the limited cycle response, the following values were measured: the 

process response amplitude A=0.7442 and the ultimate period Pu=3.9 s. 

Step 3:  From equations (17) ultimate freqency ωu=1.611 rad/s was calculated. 

Step 4:  From equation (24) the identified FOPDT model time constant and time 

delay are: T=14.005, L=1. 

Step 5:  From equation (25) the gain of FOPDT model K=13.166. 

The identified FOPDT model using the unbiased relay feedback test, is: 

1
13.166

( )
14.005 1

sG s e
s




  (30) 

Step 6: The closed-loop under proportional controller step test with Kp=1.5 

(Kp<1.715) and the reference step input amplitude R=1. From the closed-loop 

response, the steady state value of the output Yss=0.95. From equation (11) the 

gain of FOPDT model K=12.8. 

The identified FOPDT model using the same feedback test and Step 6, is: 

2
12.8

( )
14.005 1

sG s e
s




  (31) 

Parameter estimation was also performed using the preload relay with describing 

function (26), with m=0.2 and the relay amplitude h=1. From the limited cycle 

response the following values were measured: the process response amplitude 
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A=0.7991 and the ultimate period Pu=3.89 s. From equations (17) ultimate 

freqency ωu=1.615 rad/s was calculated. From equation (24) the identified 

FOPDT model time constant and time delay are: T=13.993, L=0.999. From 

equation (27) the gain of FOPDT model is K=12.616. 

The identified FOPDT model using the preload relay feedback test, is: 

0.999
3

12.616
( )

13.993 1

sG s e
s




  (32) 

Unit step response of the WB column and the identified FOPDT models are 

shown in Figure 6. 

Model validation in time domain (simulation time is 100 s): for the identified 

FOPDT model G1(s): MAE=0.65, RMSE=0.70, the identified FOPDT model 

G2(s): MAE=0.34, RMSE=0.44, the identified FOPDT model G3(s): MAE=0.27, 

RMSE=0.35. 

The gain margin of the WB column is GM=6.44 dB and ultimate freqency 

ωu=1.61 rad/s. The same parameteres for the FOPDT models G1(s) are: GM=4.71 

dB, ωu=1.61 rad/s, for the FOPDT models G2(s), GM=4.95 dB, ωu=1.61 rad/s and 

for the FOPDT models G3(s), GM=5.08 dB, ωu=1.62 rad/s. 

 

 

Figure 6 

Unit step response of the WB column and identified FOPDT models 

The gain margin of the WB column is GM=6.44 dB and ultimate freqency 

ωu=1.61 rad/s. The same parameteres for the FOPDT models G1(s) are: GM=4.71 

dB, ωu=1.61 rad/s, for the FOPDT models G2(s), GM=4.95 dB, ωu=1.61 rad/s and 

for the FOPDT models G3(s), GM=5.08 dB, ωu=1.62 rad/s. 
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Nyquist fitting of the identified FOPDT models for a linearized model of WB 

column is shown in Figure 7. 

 

Figure 7 

Nyquist fitting of identified FOPDT models for a WB column 

It is obvious that the identified FOPDT model G1(s) in comparison to the other 

two identified models doesn’t represent the WB column in time and frequency 

domain as accurate as the two models. Using Step 6 of the method, the estimated 

gain is received compared to the gain of the FOPDT model received using formula 

(25). Using the preload relay feedback test, the parameters of the FOPDT models 

are better estimated. 

Conclusions 

The application of the Lamber W function, in the unbiased relay test, allows for 

the estimation of all the parameters of the FOPDT model to be estimated without 

prior knowledge of either the gain or dead time, as opposed to other methods, in 

the literature, where it is necessary to know at least one of the two aforementioned 

parameters, or to read the dead time, from the obtained response. 
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