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Introduction 

In the age of a technological revolution one can easily find various devices 

supporting problem solving in general. Among others, making decisions, 

statistical inferences, complicated calculations, as well as deriving formulas can 

be listed. These devices equipped with adequate applications provide an aid both 

for further development of sciences and for everyday education. It is reasonable to 

classify these smart machines in order to make immediate decisions in choosing 

which one to use for a given task or to estimate the level of human abilities the 

machine operator must have to use it successfully. Such an attitude towards 

research and education influences habits of self-education as well as modern 

teaching methods. Additionally, when taking into consideration the changing 

perceptive templates of the younger generation it is worthwhile to investigate new 

learning methods aided with the described devices. 

In the paper we present an overview of three aspects. First of all, we discuss the 

idea of mathability which refers to devices with high mathematical and logical 

potential. Next, cognitive patterns are considered from a point of view of 
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constructive educational methods. Finally, a proposal of a new taxonomy of 

learning outcomes and educational goals is demonstrated. 

Referring to the definition of cognitive infocommunications (CogInfoCom; cf. [1] 

and [2]), we describe how people can communicate with machines to possess new 

knowledge. Moreover, we contribute to cognitive sciences by investigating 

patterns of young people’s perceptions and their methods of assimilating new 

information, building their knowledge system with problem solving and 

experience, using devices equipped with applications of high level of mathability. 

We show how a cognitive process in education co-evolves with 

infocommunication devices. We also give evidence that the human brain may 

interact with the capabilities of systems which support cognition. 

1 The Concept of Mathability 

In the educational literature, the notion of mathability is interpreted as human 

mathematical ability. A broader idea of the concept was introduced in the paper 

[3] (cf., also, [2]). Mathability was defined as any combination of artificial and 

natural cognitive capabilities relevant to mathematics. Hence, it is an object of 

investigation of cognitive infocommunications. The range of its interest stretches 

from low-level arithmetic operations to high-level symbolic reasoning. 

Connected to mathability, in papers [7], [16] and [17], examples of computer-

aided solutions of mathematical problems were presented. In [7], symbolic 

calculations and computer algebraic methods were used to derive the solutions of 

linear functional equations with a computer program (cf., also, [14] and [15]), 

while in [16] and [17], an animation related to a generalized convexity concept 

was described. Education aspects of mathability were also investigated by several 

authors (cf., e.g., [5], [9], [10], [11]). 

In article [9], it was pointed out that a quantification of artificial mathematical 

capabilities would be useful. For instance, contemporary educational institutions 

allow the use of calculators or other mobile equipment to solve mathematical tasks 

not only during classes but also during formal examinations. Having a kind of 

measure for the mathability level, it could be precisely determined which level of 

mathability a tool should have. Given an official mathability level on the tools, it 

would be very easy to check it even during or right before any exam. It is natural 

to ask: 

1) what sort of a smart device is allowed to be applied, 

2) who and in which form should control whether the device does not exceed 

the admissible capabilities. Given a mathability level officially on the tools, 

it would be very easy to check it even during or right before any exam. 
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Figure 1 

Easy solution with Photomat 

It should be taken into account that powerful tools are easily accessible and 

extensively applied. Machines like popular smart phones provide access to 

symbolic and algebraic methods. Let us mention a simple mobile application 

called Photomat (see Figure 1, https://photomath.net/en/). After scanning any 

handwritten formula, equation, etc., it returns a result. Moreover, it is possible to 

observe each consecutive step of the solution. 

Such a wealth of smart devices and Internet applications combined with 

characteristics of the younger generation should be taken into consideration while 

investigating modern education. In further chapters we will try to meet the 

challenge. 

2 Contemporary Cognition Patterns 

2.1 Foundation of Constructive Education 

By constructive education we mean building knowledge with creating both new 

notions or algorithms and relations between the notions through experience. The 

idea came up a long time ago but nowadays it is becoming meaningful. It is 

noteworthy that J. Dewey’s approach to school education which, in his opinion, 

should present real life problems and students should be given a chance to 

experiment. Experiential education consisting of experience, experiments, 

freedom as well as goal-oriented learning resulted in the concept of progressive 

education [13]. Among other fathers of constructivism Gy. Pólya [22], J. Bruner 

[8] and J. Piaget [21] should be mentioned since they influenced the method of 

problem solving thinking and contemporary progressive education, which is so 

useful in mathematics, techniques, informatics and other sciences. 

For further reading it is worth mentioning D. Kolb’s thesis dated from 1976 and 

referring to learning styles and experiential learning, too [19]. Namely, D Kolb 

and R. Fry presented a model of an experiential learning cycle (see Figure 2) built 

of four elements: concrete experience, observation and reflection, forming abstract 
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concepts and testing the concepts in new situations [20]. The authors point out that 

a student can start learning at any of the four steps and then follow the cycle. The 

starting point is chosen according to the student’s learning style. 

 

 

 

 

 

 

 

 

 

Figure 2 

Kolb’s experiential learning cycle 

Kolb and Fry’s learning styles inventory was topped off with identifying four 

styles: 

- converger, who is good at practical application of ideas, hence the converger 

can start the cycle with abstract conceptualization and immediate active 

experimenting, 

- diverger, who generates ideas and can see things from various perspectives,  

so the diverger would rather start the cycle with concrete experience and 

reflective observation, 

- assimilator, who is able to create theoretical models and inductive reasoning, 

the assimilator would choose abstract conceptualization and reflective 

observation, 

- accommodator, who is skillful in doing things, solves problems intuitively 

and immediately, takes a risk, the accommodator focuses on concrete 

experience and active experimentation. 

The idea of progressive education will be the foundation of building a taxonomy 

of learning outcomes which we discuss in Chapter 4. 

2.2 Contemporary Cognitive Templates 

New modern multimedia devices seem to be overused by teenagers. On the other 

hand, they have worked out a habit of searching for keywords and immediate 

matching, comparing and concluding. 
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A short example can help to compare the efficiency of reading between teenagers 

and people aged 40+. A text with a mathematical problem was given both to a 

teacher of mathematics (aged 40+) and an ordinary student (aged 17). The text 

contained an imperfection which led to a false solution. Hence, it was necessary to 

find the error in the content. The teacher and the student decided to browse the 

Internet to find a description of a similar problem. Among a group of similar texts 

only one fitted the discussed problem completely. It was the student who found it 

first, compared it with the original task and pointed out the imperfection. While 

the teacher was still analyzing the content the student compared only keywords 

which in his opinion were crucial for the correct description of the problem. This 

simple situation showed us that the process of transforming data is different for 

people trained in working with traditional (printed) texts and those who explore 

hypertexts (cf. [10]; for further information, we refer to [18]). 

Of course, this is not the only difference creating an educational generation gap. 

Some more aspects are presented in the following part. The style of reading as 

well as other cognitive templates described below provide assumptions for 

building a new idea of education aided with high mathability level devices, which 

is part of the cognitive infocommunication area. 

2.2.1 Young Generation Habits 

In the papers [9] and [10], among others, ways of self-education based on Internet 

sources of knowledge were investigated. Some risks were pointed out, when the 

learning process is not controlled or misses an essential stage. 

To prove this, three groups (students of mathematics, students of informatics, 

lower secondary pupils trained in problem solving) were given mathematical or 

programming problems to solve. The majority of them failed to find the solutions. 

It clearly shows that in some cases constructive methods of self-education end in 

failure. Namely, there were 3 main procedural errors observed. 

First of all, the majority of students used a short Wikipedia explanation which was 

only an introduction to the detailed description. They did not get to the essence of 

the required algorithm since they did not spend enough time to read the full 

explanation. Moreover, the tasks – learning by discovering – had the greatest 

influence on their knowledge. Although they were given further explanation, 

during the exam they recalled mainly the part they discovered on their own (read 

more in [10]). 

Secondly, we observed how misleading it is to read keywords when they fit the 

students’ prior knowledge systems. For instance, having a task to code some 

numbers with Fibonacci coding, students found (again only in Wikipedia) a short 

definition explaining that “Fibonacci coding is a universal positional code which 

encodes positive integers into binary code words. It is one example of 

representations of integers based on Fibonacci numbers.” (cf. [10]). Students did 

not read the explanation further since they were sure they had understood the 
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definition. Most of them neither considered substantial details nor examined any 

samples. As a result, for instance, in order to code the number 47 some students: 

(1) applied binary coding, (2) used Fibonacci numbers, hence they obtained: 

47 = 1011112 = F1 + F2 + F3 + F4 + F6 = 1 + 2 + 3 + 5 + 13 = 24. 

Finally, superficiality turned out to be a general problem. Students limited the 

source of their knowledge to Wikipedia. They were satisfied with a sketchy 

solution and did not find it worthwhile to understand the core of the problem and 

its solution nor to reflect on the obtained result. 

On the other hand, young people are able to use mobile devices to support their 

calculus. In [9] we presented, among others, an example of the use of Wolfram 

Alpha (https://www.wolframalpha.com) to analyze derivatives of the first and 

second order when the students’ aim was to investigate properties of a given 

function and to draw its graph. Surprisingly, it was the student with the least 

mathematical competences who solved the problem correctly and finished the task 

in the shortest time. Aiding calculation and deriving formulas with the mentioned 

application on-line, he obtained partial solutions immediately and interpreted the 

results properly. 

This brief characterization of young people efficiently searching for keywords, 

being contented with sketchy solutions but well trained in concluding and 

matching new knowledge with their prior knowledge system, capably using smart 

devices to support necessary calculus, should be supplemented with the young 

people’s habit of overusing multimedia. As an immediate result they are less 

patient, and more often give up solving a task when it seems to be too difficult. It 

should be mentioned that, our observation’s show that, the average time for a 

teenager to focus on a single complex problem has significantly shrunk. All the 

features above influence young people’s perception, knowledge assimilation, 

educational practices and learning capabilities. For further investigations of this 

topic, we refer to the paper [4]. 

Our aim is to start adapting educational methods to reflect the above 

characterization. First, it is essential to determine the necessary and sufficient 

foundation of sciences. Then, we should find how much the foundation should be 

known and how deep it should be understood before mathability devices are 

efficiently applied to solve problems and construct new knowledge. To clarify the 

idea, we present the following example. It shows that the scientist does not need to 

know a complicated calculation of an advanced multivariable analysis method to 

understand and use its results. 

2.2.2 Advanced Statistics Research Example 

Let us consider a case of using a statistical data mining engine where algorithms 

for finding a solution are unknown to an ordinary user. Although the algorithms 

are hardly understandable for their authors, they give phenomenal solutions. 
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Having general knowledge about time series and statistical forecasting we used 

SAS® Enterprise MinerTM to analyze road events in Bydgoszcz between 2002 and 

2007 in order to forecast the number and severity of road events and accidents in 

the city for a short period of time in 2008. We chose 8 out of 17 attributes of road 

events (location on the road net, human related reasons, number of people killed, 

number of people injured, etc.). There were altogether 37372 records to consider. 

The application we used requires building a visual project combining tools and 

methods of data preparation and transformation like in Figure 3 

(https://www.sas.com/en_gb/software/enterprise-miner.html). As a result, we 

obtained tables abundant with numbers (see Figure 4). Then, it was enough to 

interpret them and draw conclusions. 

Figure 3 

Visual project of statistical analysis with SAS® Enterprise MinerTM 

     

Figure 4 

Analysis of irregular components – autocorrelation indicators, white noise tests, unit roots tests 

It was not necessary to understand, for instance, the method of imputation of 

missing data; we only had to know which method of imputation fits best the set of 

data. Again, it was not needed to know how the thousands of values are processed 

in time series analysis. As researches we had to define the dependent variables, the 

set of independent variables, mark a type of model supposed to describe 

dependencies between variables and chose a plan of investigation, for instance, 

imputation, analyzing white noise, analyzing autocorrelation order, checking 

whether the process is stationary, etc. Applying a trial and error method we found 

that the model of seasonal exponential smoothing fits best the given data, the 

model is stationary with autocorrelation of order two. Although the R-square 

coefficient of determination was only 0.148 (which proves that the goodness of fit 

of the model was very weak) we used the model for further prediction. In the 

research it was crucial to set the parameters of the model and understand the 
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obtained values, namely to know how they should be interpreted. Only some 

particular definitions had to be known and understood to build an advanced model 

of forecasting. It was not required to feel fluent in multivariable statistical analysis 

to use the achieved model for forecasting. 

For further examples related to databases, in which the problem appears how to 

define necessary and sufficient knowledge for applying ICT successfully, we refer 

to [12]. 

3 Mathability in Education 

As far as school education is concerned usually computer aided methods refer to 

Internet sources of knowledge or to the use of applications supporting the 

teachers’ job. Such programs as Cabri and Geogebra are popular and often used in 

primary and secondary schools. Academic didactics is aided rather by Wolfram 

Mathematica, Statistica, MathLab and computer-aided design (CAD) systems. 

Here, we would like to highlight three aspects of implementing computer aided 

mentoring into the everyday life of school pupils (for more details we refer to 

[10]). 

Discovering. Let us consider an example of designating the sum of a convergent 

series. The notion, on the regular basis, is introduced to students in the first year of 

sciences. However, it can be easily assimilated by students of upper secondary 

school. The basic question is: is it necessary to know the formal definition to use a 

computer application and find the required sum? Using Wolfram Alpha we have 

an immediate result (see Figure 5, https://www.wolframalpha.com). 

 

Figure 5 

Infinite sum in Wolfram Alpha 
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Students can learn that an infinite sum, for instance 1+ 1/2 + 1/4 +1/8 +…, can 

have a finite value. On the other hand, a similar infinite sum 1+1/2+1/3+1/4+… 

results in a message “sum diverges”. Of, course we do not need any knowledge to 

produce the results, but it is important to understand what distinguishes one task 

from the other. Hence, it is worthwhile to understand the mechanism of series 

convergence. 

Students need to know and understand the notion of a sequence limit, which was 

the essential knowledge necessary to solve the problem. Then, Wolfram 

Mathematica or another application can be used to compute consecutive partial 

sums of the above series and represent the obtained values on graphs. Students can 

easily observe that the sequence of partial sums of the first series is convergent 

and in the other case – it is not. The students can remark that the finite limit of the 

sequence of partial sums is equal to the sum of the series. The students succeeded 

to formulate a convergence criterion on their own. 

Interpretation. Let us consider another example of introducing academic 

knowledge to students of upper secondary school. Namely, the students learned 

the notions of Taylor series and Taylor approximation of a function. Next, as an 

exercise they approximated a function f(x)=sin x with Maclaurin series, obtaining 

  ...
!5!3

sin
53


xx

xx  (1) 

In order to interpret the results they applied Wolfram Mathematica again to 

observe simultaneously the graphs of both functions from equation (1), i.e. the 

graph of the sin function and graphs of polynomials of various ranks. Then, 

students concluded that a trigonometric function can be locally represented as a 

simple polynomial function. 

Proofs. Finally, it is worthwhile to comment how much mathability devices are 

applicable in investigations where commonly used methods fail. For instance, 

students of a technical major were asked to examine the existence of a local 

extremum at the point P(0,0) for two functions: 

  44 yxxf  , (2) 

  44 )()( yxyxxf  . (3) 

The standard method of finding the determinant of partial derivatives of the 

second order was not applicable since both determinants were equal to zero. In 

such a case representing the functions graphically enabled students to prove that 

the function given by formula (2) has no extremum at P(0,0) since in any 

neighborhood of P there exists a point for which the value of the function is 

positive and there exists a point for which the value of the function is negative. 

Analogously, they proved that the function given by formula (3) has a local 

minimum at P. 
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In the above-mentioned examples the students were guided by their mentors. The 

problem arises when the students must do a task without mentoring, simply using 

any source of knowledge or any useful mathability device. Then, the strategy 

should be changed and the habit of asking questions comes in handy provided that 

it follows a well ordered structure of questioning. For more details, we refer to 

[11]. First, we will describe examples of learning outcomes taxonomies in order to 

draw a theoretical background for creating such a questioning structure. 

4 Taxonomies of Learning Outcomes 

4.1 Classical Taxonomy 

The classification of educational objectives named after Bloom is one of the most 

commonly used taxonomies [6]. Let us recall his model of cognitive (knowledge-

based) domain consisting of six stages: 

1) remembering, 

2) comprehending, 

3) applying, 

4) analyzing, 

5) synthesizing, 

6) evaluating. 

The model is compatible with Kolb’s cycle where Kolb’s concrete experience 

corresponds to Bloom’s remembering, comprehending and applying, observation 

and reflection corresponds to analyzing, forming abstract concepts – to 

synthesizing which, in fact, is adequate for building new knowledge, finally 

testing the concepts in new situations corresponds to evaluating which ends the 

cycle. From that point we start the cycle again, on a higher level. 

Bloom suggested that the process of learning started with gaining knowledge, then 

students had to understand it, apply it in typical situations, analyze it before they 

were able to use it in new or problematic cases. Evaluating completed the process 

of creating new notions and methods before they could be applied as a base for 

further learning. This is why Bloom’s concept is suitable for traditional, direct 

teaching. As opposed to this, Kolb states it is possible to start a learning process 

from an arbitrary stage according to the student’s learning style preferences 

(described in Chapter 2). Moreover, Bloom’s model was created over 60 years ago 

when the sources of knowledge were limited. Easy access to informative data 

bases, and the above described characterization of cognitive behaviors enable us 

to build a new pattern of computer assisted education. 
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4.2 Proposal of a Taxonomy for Constructive Education Aided 

with High Level Mathability Devices 

In our papers [9], [10] we pointed out that working with multimedia sources of 

knowledge requires paying more attention to the selection and assessment of the 

gathered information. On the other hand, we have already stressed how important 

it is to reflect on the results obtained while learning by trial and error. Self-

education with broad informative data bases is often followed by a lack of 

reflection over the obtained false results or misunderstanding caused by 

superficiality. We also gave examples of how useful computer aided mentoring 

can be. Now, following the mentor-related methods, we would like to present a 

scheme of cognitive learning objectives adjusted to constructive methods 

supported with smart devices, compatible both with Bloom’s and Kolb’s systems. 

We will compare the common elements of the three models. 

First, let us consider a cognitive model of using informative data bases (like the 

Internet, multimedia, etc.) to learn or create new knowledge (Table 1). 

We will consider both constructive teaching methods based on knowledge gained 

by students on their own and methods of non-mentored constructive learning. 

Assuming that students gather information by themselves, the first step should be 

to browse knowledge sources, search for information and already solved 

examples. The step is consistent with Bloom’s remembering stage since young 

people do not feel the need to memorize information if it is so easily accessible on 

the net. In Kolb’s cycle we could compare it to the stage of concrete experience. 

The second step is unfortunately frequently omitted by students. However, it is 

extremely important from the point of view of building a solid foundation for 

further education. This is the stage of evaluating and selecting information that fits 

the prior knowledge system, is understandable (not too complicated) and credible. 

Two Blooms stages are consistent with this step: analyzing and comprehending. It 

also corresponds to Kolb’s observation and reflection stage. 

In the next step, students assimilate the new knowledge into the prior knowledge 

system, build analogies, find relations, and draw conclusions. If they have learned 

an algorithm they can try their own computation with other data or in similar 

cases. This is what corresponds to Bloom’s applying and Kolb’s testing the 

concept. 

Having gained some new experience students interpret new knowledge or, 

according to Bloom, synthesize it. Finally, similarly to Blooms’s model, they 

reflect on an overall result, evaluate new knowledge or methods. The last two 

stages can be compared to Kolb’s forming abstract concepts. From that point the 

cycle starts again from the beginning since new questions should arise and make 

students search for more information and new methods. 
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Table 1 

Comparison of computer aided education, Bloom’s taxonomy and Kolb’s cycle for knowledge 

Level Computer aided 

education 

Bloom’s taxonomy Kolb’s cycle 

Knowledge 

and 

understanding 

Browsing,  Searching, 

Sample usage 

Remembering Concrete 

experience 

Evaluation  

of information, 

Selection, 

Analyzing Observation and 

reflection Comprehending 

Abilities 

 

 

Assimilating into 

prior knowledge 

Applying Testing the concept 

Applying, 

Own computation 

Interpreting Synthesizing Forming abstract 

concepts Reflecting  Evaluating 

results 

Evaluating 

Taking into consideration that easy access to high mathability level devices gives 

a chance for learning by doing as well as for learning by trial and error, it is 

reasonable to propose a similar pattern for learning or creating new methods, 

procedures or algorithms (Table 2). 

In this case we assume that first of all students have a theoretical foundation 

which does not necessarily mean that they are acquainted with the formal 

definitions or know and understand details of the appropriate theorems. This is 

why it is important to establish a necessary and sufficient level of knowledge for 

such a foundation. The stage of remembering and understanding the foundation 

corresponds to two first steps of Bloom’s model: remembering and 

comprehending. However, understanding refers only to the proper knowledge 

base. 

Next, students choose and apply an appropriate mathability device or application 

in order to compute results, derive formulas or obtain other required solutions. It 

corresponds to Bloom’s stage of applying. The first two steps correspond to 

Kolb’s concrete experience. 

Then Bloom’s analyzing and Kolb’s observation and reflection stages come, 

which in our model means interpreting the obtained results. Students assess the 

accuracy and correctness of the results, check their accordance with assumptions, 

formulate interpretation of the quantities they achieved, etc. Again, this is a 

frequently omitted step in a student’s work even if it is substantial. 

Now, students have the expertise to do their own computation in different, 

sometimes problematic cases what Kolb calls testing the concept and corresponds 

to Bloom’s synthesizing stage. 
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Eventually, students reflect on the result, which is a possessed new ability, 

algorithm or procedure. They try to think of a new use of the result, evaluate its 

usefulness, find its limitations, etc. This stage corresponds to evaluating and 

forming abstract concepts in Bloom’s and Kolb’s models, respectively. 

It is reasonable to divide both classifications (for knowledge and abilities) into 

two parts: 1) knowledge and its comprehension, 2) abilities or mathabilities. Such 

a division is consistent with former existing models. It should be mentioned that 

abilities in the division refer to mental abilities such as assimilating, applying 

(mentally), interpreting, reflecting, evaluating, while mathability refers to the 

ability of applying smart devices for further reasoning. 

Table 2 

Comparison of a computer aided education, Bloom’s taxonomy and Kolb’s cycle for abilities 

Level Computer aided education Levels of Bloom’s 

taxonomy 

Kolb’s cycle 

Knowledge 

and 

understanding 

Remembering and 

understanding the 

foundation 

Remembering 

Comprehending 

foundation 

Concrete 

experience 

 

 Mathability Computing aided with 

smart devices 

Applying 

Abilities Interpreting results Analysing Observation and  

reflection  

Own computing Synthesizing Testing the 

concept 

Reflection = 

Evaluation of results 

Evaluating  Forming abstract 

concepts 

Conclusions 

Perception and learning practices have been influenced by common habits of 

using multimedia, modern tools of cognitive infocommunication and facilities for 

gathering information using instant searching for keywords. Hence, the ways of 

human cognition and knowledge assimilation have been modified. Modern 

mathematical, technical and science education should fit the new habits and 

capabilities of young people. Applying high level mathability devices and 

applications as well as using multimedia knowledge sources, guided by mentors 

can be very helpful. Thanks to such methods the presented characteristic of the 

young generation, e.g. lack of accuracy, sketchy solutions, lack of assessment and 

reflection, could be easily eliminated. 
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