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Abstract: In this paper, new sufficient Lyapunov-like stability conditions and new 

Lyapunov-like, stabilizability conditions for nonlinear descriptor systems, with control, are 

presented along with their applications to quadcopter’s flight stabilization. Most of these 

results are rather practical because they do not need solving nonlinear differential 

equations and nonlinear algebraic equations. Thus, the usage of these new results requires 

only the differentiation of functions. The numerical simulation results prove that the 

stabilization of the quadcopter is improved, in comparison with pure tracking control. 
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1 Introduction 

Considerable new developments appeared over the last couple of decades, within 

the literature, on various hybrid dynamical systems [1], [2]. Certain segments of 

these developments are called differential-algebraic systems while others hybrid 

systems, one subclass of which obeys switching law in terms of algebraic part 

hence known as switched systems, while another subclass is referred to as 

nonlinear descriptor systems and is of main concern in this study. Nonetheless, the 

word is about an equivalent case of nonlinear dynamical continuous-time systems 

to linear descriptor systems. These can be best envisaged by the original system 

created in 1951 by A. I. Lurye [3] at the Control Science Institute of Academy of 

Sciences in Moscow. Namely, Lurye’s nonlinear systems had a feedback 

architecture with one static sector nonlinearity and a linear dynamic component, 

classical one, which could be conceptualized as descriptor, linear as in Figure 1. 
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The herein considered, nonlinear descriptor systems can be readily envisaged as a 

generalization of Lurye by assuming the linear part is described by descriptor 

state-variable and output equation as depicted in Fig. 1. Obviously, this figure 

highlights the underlying control physics of nonlinear descriptor systems. 

Feedback systems having such an architecture became known as Lurye-type of 

systems (also called nonlinear control systems with separable nonlinearity) while 

their stability as the Lurye stability problem. Ultimately LaSalle and Lefschetz 

solved it in [4], by proving that Lurye’s candidate Lyapunov function was indeed 

a proper Lyapunov function, for his class of nonlinear systems [3]. Many years 

later, in 2000, the essential fundamental result on the stability of multivariable 

Lurye systems [5] appeared. 

 

Figure 1 

Lurye-type of nonlinear descriptor systems 

To date, the most thorough recent study for Lurye-type subclass of nonlinear 

descriptor systems was contributed by M. Ikeda and collaborators of Graduate 

Scholl of Engineering his at Osaka University; see [6]-[8] and references therein. 

In 2004, they have derived absolute stability criteria for Lurye systems with 

asymmetric nonlinearities [6], and in 2006 they published stability theory for 

descriptor system with non-smooth nonlinearities [7]. Furthermore, in 2008, they 

solved the absolute stability problem for multivariable Lurye-type descriptor 

systems [8]. Thus, we consider, nowadays, the concept of nonlinear descriptor 

systems is well established and their mathematical description generalized to 

differential-algebraic equations like (1) and (2) presented below. 

In the sequel, the following combined differential and algebraic equations define 

the descriptor nonlinear systems of interest in this study. Consider the system of 

differential and algebraic equations (descriptor system) 

1 1 2( ) ( ( ), ( )) ,x t x t x t f          (1) 

1 20 (x (t), x (t)) , h                                       (2) 

where 1

1 1 1( ) ,nx x t  N R  2

2 2 2( ) .nx x t  N R  

Let denote  1 2( ) : ( ) ( )
T

x x t x t x t    1 2 ,n  N N N R
1 2.n n n   Let denote 

by  10 20 0

T
x x x  the initial condition for the descriptor system (1) and (2).      
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The function 
1 2( , )x xf  and 

1 2( , )x xh  are assumed to have partial derivatives of all 

orders in N . Even though, the existence of all partial derivatives is not needed in 

all of our results. 

The set N  must be invariant with respect to the dynamics (1) and (2), i.e. once 

0x N  we must have ( )x t N for all 0.t   The importance of the sets N  is 

illustrated in Example 3. Obtaining the set N  is not easy if there is no physical 

interpretation of the mathematical model (1) and (2). In that case, estimation 

mathematical techniques could be applied, as in Example 4 of [4] (pages 68-70). 

Assumption 1: (0,0) 0f  and (0,0) 0h  

Notice that this assumption is a natural consequence of the fundamental laws of 

physics. 

The systems of the form (1) and (2) became of considerable current interest 

nowadays; see [2] and references therein. Nonetheless, there are three reasons at 

least why we consider such systems: 

i. If the system includes both linearities and nonlinearities, then it is convenient 

if we can separate the nonlinearities into algebraic equations of the type 

1 2( , ) 0.x x h  (Obviously, then 
1 2( , )x xf  is a linear dependence of the form 

1 2 1 1 2 2( , )x x A x A x f  for some constant matrices 
1A  and 

2A ). For example, 

in electrical circuits containing nonlinear elements (for instance, diodes) the 

nonlinear block ( ) 0x h can be chosen so that it contains the nonlinear 

elements only. 

ii. In many systems, a passive [9] or made passive by feedback [10]-[12] 

(usually referred to as ‘passified’), or else conservative [13] some part could 

appear separated. 

It is important to mention works [14], [15] and later [16] which marked the 

beginning of studies in dissipative and passive dynamical systems (the linear 

ones, in particular), as well as, passivity-oriented reliable control 

developments. 

iii. The holonomic constraints in mechatronic systems are modelled by the 

algebraic constraints of the type (2) (see [17]). As we shall show in Section 

3.1 the descriptor system (1) and (2) is a natural model for the typical 

quadcopter construction. 

In order to motivate our concept, we discuss here the drawbacks of the two well-

accepted concepts for stabilization of affine-in-control nonlinear systems that are 

given by: 

( ) ( ) , , ,n mx x x u x u   R Rf G                                         (3) 
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( ) ( ) , ,my h x E x u y  R                     (4) 

where u  is the control variable and y is the output variable. Namely, these are the 

concept of feedback passivization [12], [19], [37] (see Section 2.4 in [37]) and the 

concept of control Lyapunov functions (see Section 3.2 in [37]). The first concept 

requires the existence of a function ( )xv  such that: 

( )
( ) ( ) , 1,2, , ,i i

x
x x i m

x


  



v
g h       (5) 

where 
1 2[ , , , ] :m g g g G  and T

1 2[ , , , ] :m h h h h.  In the case of vector control 

( 1),m   the system of partial differential equations (5) has no solution in the 

generic case of controllable system. (Also see the Comment (3) on page 1225 in 

[13]). Therefore, the concept of feedback passivization does not use the 

controllability property in a positive way. 

In the concept of control Lyapunov functions, one has to find a so-called control 

Lyapunov function ( )xv  such that the following implication relationships hold: 

( ) ( )
( ) 0 , 1,2, , ( ) 0 .i

x x
x i m x

x x

 
    

 

v v
g f                        (6) 

Apart of the fact that it is more involved to find a control Lyapunov function than 

to find a Lyapunov function, in order to check the validity of implication (6), the 

system on the left in (6) has to be solved in v . However, analogous to the case of 

system (5), this system too has no solution in the generic case. 

The contributions of this paper are: 

Theorem 1, which is one of the main results of this paper, can be regarded as a 

generalization of the second part of the Corollary 1 in [18] (i.e., going from linear 

descriptor systems to nonlinear descriptor systems). Theorem 2, which is also one 

of the main results in here, does generalize Theorem 4 in [18] (i.e., going from 

controlled systems to controlled descriptor systems). Also, the four corollaries in 

this paper guarantee stability and stabilizability as these Theorems 1 and 2 do, 

respectively. But our conditions, which are based on differentiation of functions, 

actually do represent observability and controllability; besides, they are more 

useful in practical applications. In particular, Corollary 4 uses the controllability 

rather in a positive way. 

Theorem 2, is advanced, in this the paper, by its application to the quadcopter 

flight stabilization problem. In particular: 

i. We consider a positive semidefinite Lyapunov-like function, instead of 

positive definite one, for the reason that the moving of quadcopter in the 

horizontal direction, in general, requires that at least one of the coordinates 

does not approach zero when t  . Precisely, if we denote by ( )x t  the 
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position of the quadcopter in the moving direction, then we require ( )x t  to be 

a ramp signal (then the corresponding velocity is nonzero), instead of 

( )x t when t  . In addition, the motion is possible only if 0   or 

0,   where   and   are quad rotor angles (attitude angles). Therefore, the 

coordinate x , as well as the attitude coordinates, are not allowed directly in 

the Lyapunov-like function. 

ii. We consider a descriptor system model of the quadcopter for the reason that 

there is no analytic inversion of the algebraic dependency (see also Remark 1 

and the algebraic dependences (27)). 

In the applications-oriented research towards electrical power systems, the actual 

novel contribution is to the so-called coordinated passivation control of nonlinear 

systems. It was first introduced by work [19] and further extended in [20]-[25]. 

The works [21]-[25] have expended the ideas of dissipativity and passivity further 

to control designs for switched dynamical systems. 

Quadcopters are known for their highly nonlinear motion dynamics and so 

nonlinear models are indispensable. A common practical procedure is to linearize 

the nonlinear quadcopter dynamic model around a hovering mode (the operating 

steady-state) since, due to its symmetric frame, the linear dynamic model becomes 

somewhat simplified, and therefore, it is easier to design linear controllers; see 

([26-30], [39]). A drawback of such linearized model, however, is the operation in 

the immediate proximity of the linearizing state point (hovering mode) must be 

secured. Once the quadcopter is out of this proximity region, the system becomes 

uncontrollable using linear control strategies, hence, it is highly possible that 

quadcopter will crash. Often, quadcopters are called under-actuated physical 

systems, where the translational motion in x y  plane are performed through the 

rotational motions , .   Namely, the 6-DoF flying object could not be controlled 

with a single loop, and thus, a cascade control system is indispensable. In order to 

recover and keep vicinity of the aforementioned hovering mode, there are various 

control approaches developed under the cascade control concept, where the inner 

loop ought to be designed at least 5 times faster than the outer loop; see [27]-[30], 

[39]. 

In this paper, we elaborate a new approach with respect to: (a) representing a 

quadcopter model as the descriptor system, i.e. system with Differential-Algebraic 

Equations; (b) designing a nonlinear control. For, recently it was shown in [31] 

and [40], that the class of descriptor state-vector systems appears more advanced 

in describing the nature of physical systems than ordinary state-vector systems. It 

should be noted that, the descriptor system approach has been already applied 

successfully to aircraft control design [32] (see Example 7.2 in there). 

Remarks on the notation. The scalars and vector are denoted by lower-case 

letters, while the matrices are denoted by upper-case letters. The functions of the 
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state variable x  are denoted by bold-faced letters, and if it is not ambiguous, we 

omit the dependence on x  frequently. If ,v  is a scalar function, the notation 
x





v
 

means 
1

,...,
nx x

  
 
  

v v
 where 

1,..., nx x  are the entries of the vector-column .x  

2 Main Results 

In this section, the following assumption specifies the specific mathematical 

preliminaries that are required in this study. 

2.1 On the Stability of Nonlinear Descriptor Systems 

The following assumption specifies certain mathematical preliminaries that are 

needed in this study. 

Assumption 2: 

(I)  The vector function h  has 
2n  entries, and the algebraic equation (2) 

defined in N  is equivalent with the equation 
2 1( ),x x  for some vector 

function ( ).   

(II) The system given by (1) and (2) has unique finite solution ( )x t  for all t>0 

and all initial conditions 
0(0) .x x  

Remark 1. (i) Assumption 2 (I) is a necessary condition for uniqueness of the 

solution of the descriptor system (1) and (2). 

(ii) By replacement of the dependency 
2 1( )x x  in the formula (1), we obtain a 

system of ordinary differential equations 
1 1 1( , ( )),x f x x  on which the standard 

existence and uniqueness results can be applied (for instance, Existence Theorem 

on page 23 in [4]). The reason why we consider the descriptor system, and not the 

ordinary system 
1 1 1( , ( ))x f x x  is that the explicit dependency 

2 1( )x x  

cannot be found in general. 

(ii) Note that under Assumption 2, impulsive solutions at 0t   of the descriptor 

system (1) and (2) cannot appear. Only finite jumps can appear at 0,t   if the 

initial conditions are not consistent [12]. 

Remark 2. Assumption 2 is not unrealistic. Indeed, sufficient conditions for 

Assumption 2 for nonlinear discrete-time descriptor system 
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1 ( , ),k k kEx Ax B k x    where the pair ( , )E A  is regular and causal, are given by 

(2) and (8) in [41]. The condition (2) is a Lipschitz-type condition on ,  while the 

condition (8) guarantees, together with (2), the contractivity of a function, needed 

to apply the fixed-point theorem, instead of the implicit function theorem, used in 

some papers referenced in [41]. 

Remark 3. Assumption 2 is natural. Indeed, if the equations (1) and (2) model a 

real system, then if Assumption 2 is not satisfied, finite escape times can appear in 

the solution, which cannot appear in practice. In this case, we have to modify the 

model equations (1) and (2). However, the problem to establish that there are no 

finite escape times is not easy. It is connected with the problem of obtaining the 

set ,N  for which we have already stated that it is not easy. (See Example 3 where 

we obtain the set N  and checked the existence of finite escape times but, only for 

a very simple descriptor system.) 

Finally, we could give our stability results without Assumption 2, like in Theorem 

VIII of seminal monograph [4], which restricts only on the bounded solutions for 

0 t   . Another possibility is to restrict N  to be a bounded set, like in 

Theorem VI of [4]. The third possibility is to consider the local asymptotic 

stability property, i.e. all points 
0x  in a neighborhood of the origin satisfy 

0(0) ( ) 0x x x t    when t  . 

An obvious consequence of Assumption 2 (I) is the following proposition. 

Proposition 1: Matrix 
2x h /  is nonsingular in .N  

Theorem 1: Under Assumptions 1 and 2, if there exists a function 
1( )xv  such 

that 

(i) 
1( ) 0x v  for all 

1 1x N  and (0) 0,v  

(ii) 
.

1 2 1 2

1

( , ) : ( , ) 0x x x x
x


  


v
φ f v  for all xN  satisfying (2), 

(iii) The solution ( )x t  of the descriptor system given by 

1 1 2 1 2 1 2( , ) , ( , ) 0 , ( , ) 0x x x x x x x  f h φ                   (7) 

satisfies ( ) lim ( ) 0tx x t   for all initial conditions 
0(0) ,x x  then the 

solution ( )x t  of the descriptor systems given by (1) and (2) satisfies 

( ) lim ( ) 0tx x t    for all initial conditions 
0(0) .x x  

Proof. For some 0,a   define the point set 1{ : 0 ( ) }.a x x a   E N v  Under the 

condition (i) and (ii), the set 
aE  is invariant with respect to dynamics (1) and (2). 

Indeed, since
1 100 ( ( )) ( ) ,x t x a  v v we have 

10 ( ( ) .)x t a v  Denote by M  
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the point set { : ( ) 0}.x x  M N φ  By virtue of Theorem VI in [4], all solutions 

( ),x t  starting with 
0(0)x x N  must tend to the largest invariant set contained 

in M .◼ 

Remark 4. That the absence of finite escape time in Theorem 1 is really 

necessary, we can see by Example 1.1 in [33], i.e. 

3 20.5(1 ) , , 2 ,x z x y z z az a y        

for some real number 0.a   (The algebraic identities (2) are void.) The initial 

conditions are 
0(0) ,x x y(0) 1  and z(0) 0.  The analytical solution for ( )x t  

satisfies 

2 2 2

0 0 1/{( ) 1 [ ( ) 1]} ,atx t x x t at e      

therefore, if 2

0 1,x   a finite escape time appears for sufficiently large .a  (This 

kind of dynamic event is called peaking phenomenon in [33].) 

On the other hand, the conditions (i), (ii) and (iii) of Theorem 1 are satisfied with 

 
2

2 3

5 1

4 4 2

1 1 1

42 4

a

ya a
y z

z

aa a

 
   

    
   
  

v . Indeed, we have 0,v  for all  , 0,y z   

and 
1 0

[ ] 0,
0 1

y
y z

z

   
     

   
v  for all  , 0.y z   

The condition 0v  implies that 0, 0y z   and 30.5 ,x x   whose solution 

( ) 0x t   when .t   

Example 1. In work [34], the below stated result is proved as Theorem 1. Namely, 

consider the regular descriptor system 

,Ex Ax
            

(8)
 

and suppose there is a solution P  of the following equations: 

,T TE P P E
                         

(9)
 

0 ,T T TA P P A C C  
                                              

(10)
 

for some matrix C. It is proved in [34], if the pair ( , )A sE C  is impulse 

observable and finite mode detectable, and if 0T TE P P E   holds, then the 

descriptor system (8) is asymptotically stable and impulse-free. 
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Let us now prove this Theorem 1 of [34] by means of our Theorem 1. For this 

purpose, consider 
1 2( , )x xf  and 

1 2( , )x xh  are represented by linear dependencies 

1 2 11 1 12 2( , )x x A x A x f  and 
1 2 21 1 22 2( , ) ,x x A x A x h  for some matrices 

11 12 21, ,A A A  and 
22 .A  Further, denote 

1
0

0 0

nI
E

 
  
 

and 
11 12

21 22

.
A A

A
A A

 
  
 

 

The absence of impulses of the descriptor system (8) is equivalent to the non-

singularity of matrix 
22A ; see article [35]. 

Next, take 1( ) 0,T Tx x E Px v  where matrix P  satisfies the equation (9) and 

(10) as well as the inequality 0.T TE P P E   Then ( ) 0,T Tx x C Cx  φ  and 

thus the conditions (i) and (ii) of Theorem 1 hold. To prove that condition (iii) 

also holds, consider the descriptor system (8) extended by the condition ( ) 0,x φ  

which appears equivalent to the equation 0.Cx   Since the pair ( , )A sE C  is 

finite mode detectable, by Theorem 1 we have that ( ) 0x t   when .t   

Example 2. Take the following nonlinear autonomous system 

2 , 1 ,

1 ,

z

z

x xy y e z

e z y

    

  
                   (11) 

with the equilibrium point ( , , ) (0,0,0).x y z   Take the function 
2 .( ) 0.5x xv  We 

find 
2 2( , ) .x y x y  v φ  Therefore, the conditions (i) and (ii) of Theorem 1 are 

satisfied. However, the condition (iii) is not satisfied. Indeed, the equation of the 

autonomous system plus the equation 2 2( , ) 0x y x y  φ  admit a solution 

( ) 0x t   and 0( ) ,ty t e y  so ( )y t   when .t   

It is easy to check that the true solution of the autonomous system is 

2 2
00.5 ( 1)

0( ) 0 ( ) ,
ty e

x t e x t
 

    

0( ) ( ) ,ty t e y  t     

and ( )z t  is given by the implicit function (11). 

Example 3. Consider the descriptor system given by 

, ,x xz y z y                                                  (12) 

2 .0z x                      (13) 
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From the latter equation it follows that the consistent initial values 

0 0(0) , (0)x x y y   and 
0(0)z z  have to satisfy 2

0 0 0,z x   and that ( ) 0x t   

for all .t  The equation (13) has two solutions z x   and .z x  If we take 

the former solution, by solving the differential equations (12), we obtain 

     
2

1 1

0 0
( ) 1/ 0.5 , ( ) 1/ ,0.5x t t z z t t z

 
                                 (14) 

( ( )y t  is not presented) therefore, a finite escape time appears ( at  
1

02t z


   ). 

In this case, we take 
1 2 , N N N  where 

1 [0, ] [ , ]    N  and 
2 [ , 0]. N  

If we take the solution ,z x  by solving the differential equation (12), we 

obtain formally the same solution (14) for ( )x t  and ( ),z t  then 

  1

0 00
( ) / .0.5

t
t s ty t e y e dss z

                     (15) 

Therefore, a finite escape time does not appear. In this case, we take 
1 2 , N N N  

where 
1N  is the same, and 

2 [0, ]. N  

Moreover, we can apply Theorem 1 on the case 
2 [0, ]. N  Take 

2( ) 0.5 0x x v . Then 5 0z  v  in .N  The equation 0v  implies that 0z   

and, by (13), 0,x   while the solution of the right equation in (12) is 0 .ty e y  

The latter solution 0( , , ) (0, ,0)tx y z e y  satisfies the condition (iii) of Theorem 1, 

therefore the solution (12) and (13) tend to the origin when t   for all initial 

values, which is already seen by (14) and (15) (That ( ) 0y    can be checked by 

applying the l’Hopital rule on (15)). 

Corollary 1: Consider that the descriptor system (1) and (2) is given, such that 

Assumptions 1 and 2 hold, and let there exist a function 
1( )xv  satisfying the 

condition (i) and (ii) of Theorem 1. If the system of algebraic equations ( ) 0,x h  

0, 0,... v v  has unique solution 0,x  then the solution ( )x t  of the descriptor 

system given by (1) and (2) satisfies ( ) lim ( ) 0
t

x x t


    for all initial conditions 

  00 .x x  

Proof. We have to prove only that the expressions 0,...v   are actually algebraic 

equations in x. Consider the extended set of equations given by (1) and (2), and 

( ) 0x v φ  too. By the differentiation of this equation in the variable ,t  we 

obtain the equation 0.v  To find v , as a function of 
1x  and 

2 ,x  we write at first 

1 2

1 2

,v x x
x x

 
 
 

φ φ
                       (16) 
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Since 
2x  is not known, we differentiate in t  the equation ( ) 0x h and obtain 

1 2

1 2

0 ,x x
x x

 
 

 

h h
 from where, by using Proposition 1, we obtain 

1

2

2 1

.x
x x



  
  

  

h h
f  

Then by replacing this identity into (16), we obtain 

1

1 2 2 1

0 .
x x x x

     
    
      

φ φ h h
v f  

The higher order time-derivatives of ,v  as function of 
1x  and 

2x , can be found in 

an obvious analogous way, which completes the proof. ◼ 

Remark 5. If (1) and (2) is a given linear descriptor system (8), then Corollary 1 

corresponds to the case when the pair ( , )A sE C  is finite mode observable, 

instead of solely finite mode detectable (like in Example 1). 

In the next corollary, we consider that the vector h  and 
2x  in the system  (1) and 

(2) are absent, i.e. we consider the autonomous system 

( ) , ,nx x x  N Rf                     (17) 

which satisfies (0) 0f  and f  has all-order partial derivatives. 

The notion of locally weak observability for nonlinear systems is defined on page 

733 of [36], and Theorem 3.1 of that paper gives the necessary and sufficient 

conditions. Here we adapt these results on the simpler autonomous (without 

control) system (17) the output of which is ( ).y x φ  The operator L f  is defined 

on scalar functions ( )xφ  as ( ) ( / ) .L x  
f
φ φ f  Consider all possible scalar 

functions ( ( ( ) ) ) : ( ),kL L L L
f f f f

φ φ  where k  is the number of times the 

symbol f  appears. According to Theorem 3.1 of [36], the system is locally 

weakly observable at some xN  if and only if the row-vectors 

( / ) ( ), 0,1,kx L k   
f
φ  have full rank n  at that .x  This condition is related to 

the condition (iii) of the next corollary. 

Corollary 2: Consider the autonomous system (17), having a unique solution 

without a finite escape time for all initial values 0 ,x N  and suppose that there 

exist a function ( )xv  satisfying the conditions: 

(i) ( ) 0x v  for all ,xN  and (0) 0v , 
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(ii) ( ) : ( ) 0x x
x


  


v
φ f v  for all ,xN  

(iii) The unique solution of all algebraic equations ( ) 0, 0,1,kL k  
f
φ  is 

0.x   

Then the solution ( )x t  of the system (17) satisfies ( ) lim ( ) 0
t

x x t


    for all 

initial conditions 
0(0) .x x  

Proof. It is a direct consequence of Corollary 1. +  

2.2 Feedback Stabilizability of Nonlinear Descriptor Systems 

Let us consider the following affine-in-control nonlinear descriptor system: 

1 1 2 1 2( , ) ( , ) ,x x x x x u f G                                 (18) 

1 2 1 20 ( , ) ( , )x x x x u h E                                               (19) 

where 1 2

1 1 2 1, ,n nx x   N R N R  1 2[ ] ,T nx x x  N R 1[ ] ,T
mu u u  

1, , mu u  are scalars, 
1[ , , ],m G g g 1[ , , ],m E e e  and 

1, , ,mg g 1, , me e  

are column-vectors. 

Theorem 2: Let there exist a function 
1( )xv  such that 

(i) 
1( ) 0x v  for all 

1 1,x N  and (0) 0,v  

(ii) 1 2 1 2

1

( , ) : ( , ) 0x x x x
x


 


v
φ f  for all xN  satisfying (2). 

Introduce the row-vector function 
1 2( , )x x  by 

1 2 1 2

1

( , ) ( , ) .x x x x
x





v
ψ G  

We apply the control 

1 2 1 2 1 2( , ) ( , ) ( , ) ,Tu x x x x x x  u Q ψ                 (20) 

where 
1 2( , )x xQ  is an arbitrary symmetric positive definite matrix function in N . 

(iii) The solution ( )x t  of the descriptor systems given by 

1 1 2( , ),x x x f                           (21) 

1 2 1 2 1 2( , ) 0 , ( , ) 0 , ( , ) 0,x x x x x x  h φ ψ                             (22) 

satisfies ( ) lim ( ) 0
t

x x t


    for all initial conditions   00 ,x x  
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Then, under Assumptions 1 and 2 for the closed-loop descriptor system given by 

(18), (19) and (20), the solution ( )x t  of the closed-loop descriptor system satisfies 

( ) lim ( ) 0
t

x x t


    for all initial condition   00 .x x  

Proof.  In fact, this theorem is a consequence of Theorem 1. Indeed, having in 

mind the inequality 

1 1 1 1 1

0 ,

T

u
x x x x x

     
     
     

v v v v v
v f G f G Q G  

we can deduce that the identity 0v  is equivalent with the set of identities 

1

0
x






v
f and 

1

0 , 1,2, , ,i i m
x


  



v
g                (23) 

and consequently 
1 2( , ) 0x x   along the trajectories of the closed-loop system. ◼ 

Remark 5. The matrix 
1 2( , )x xQ  has been introduced in order to enable achieving 

a proper balance between the usually opposite tasks: 

(i) Reducing the magnitude of the control; and 

(ii) Obtaining an acceptable distance to instability boundary of the closed-loop 

system, which in this paper for nonlinear descriptor systems is not defined 

rigorously; it is conditionally assumed based on Lurye’s theory [3]. 

(Recall that for stable linear autonomous systems, x Ax , the distance to 

instability is the smallest distance to the imaginary axis among all eigenvalues of 

the matrix A ). 

Remark 6. It is shown in [40] that in the case of linear descriptor system, using a 

preliminary feedback, we can obtain an impulse-free descriptor system, which is a 

property of a part of Assumption 2. Similar pre-feedback could be applied on the 

nonlinear descriptor system (18), (19). 

As in Corollaries 1 and 2, here we find sufficient conditions which guarantee that 

Condition (iii) of Theorem 2 holds without integrating nonlinear differential 

equations and without solving nonlinear algebraic systems. Introduce the Jacobi 

brackets [ , ]if g  between the vector functions f  and 
ig , i.e. vector fields, 

defined as: 

1 1

[ , ] ,i

i i
x x

 
 
 

g f
f g f g and then define inductively the following operator ad: 

0ad ,i i
f
g g

1ad [ , ad ] ,k k

i i

 
f f

g f g 0,1,2,k    Further, let us denote by 

1 2, 1( , , )x x mf g gL  the set of vector functions f  and ad , 1, , ,k

i i m 
f
g  

0,1,k    
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Corollary 3: Let there exist a function 
1( )xv  such that 

(i) 
1( ) 0x v  for all 

1 1,x N  (0) 0,v  

(ii)  1 2 1 2

1

( , ) : , 0x x x x
x


 


v
φ f  for all xN  satisfying (2). 

(iii) 
1 2, 1 1rank( ( , )) ,,x x m n f g gL  for all nonzero xN  satisfying (22), 

(iv) the algebraic equations given by 
1

0
x






v
 and (22) have unique solution 

1 20, 0.x x   

With application of the chosen control (20), and under Assumptions 1 and 2 for 

the closed-loop descriptor system described by means of (18), (19) and (20), the 

solution ( )x t  of closed-loop descriptor system satisfies ( ) lim ( ) 0
t

x x t


    for all 

initial conditions 
0(0) .x x  

Proof. A consequence of the identities (23) and 
1 1 2( , )x x x f  is the following 

identity 

1

1 2

1

( ( ))
0 ( ( ), ( ))i

x t
x t

d
x t

dt x

 
  

 

v
g

2
T

2

1 1 1

i

i
x x x

 
 
  

gv v
f g f  

2
T

2

1 1 1

[ , ]i i i
x x x

   
   
   

v f v
f g g f g  

2
T

2

1 1 1 1

[ , ]i i
x x x x

    
   
    

v v f v
f g f g  

1 1 1 1

[ , ] [ , ]i i i
x x x x

    
   
    

v v v
f g f g f g  

where the property that matrix 
2

2

1x





v
 is symmetric is used, which is true due to the 

equality of mixed second-order partial derivatives. By means of mathematical 

induction, we obtain the identity 
1

ad 0 , 1, , , 0,1,k

i i m k
x


    


f

v
g  . 

Then by the condition (iii) of Corollary 3 and by 
1 2, 1

1

( , , ) 0,x x m
x


 



v
f g gL  we 

obtain 
1

0,
x






v
 for all xN  except 0.x   Furthermore due to condition (iv), we 

have 
1 0x   and 

2 0.x   +  
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In the subsequent corollary, we consider that the equation (19) is void and 

consequently the vector 
2x  is void too. That is, we consider the affine-in-control 

system 

( ) ( ) , ,n mx x x u x u    N R Rf G ,                 (24) 

which satisfies (0) 0f  and the functions f  and G  have partial derivatives of 

all orders. In this case, the definition of set 
1( , , , )x mf g gL  is obvious. By 

Theorem 2.2 of [36], if rank of 
1( , , , )x mf g gL  is full at some nx N R  

(equal to n ), then the system (24) is locally weakly controllable at x . 

Corollary 4: Let there exist a function ( )xv  such that 

(i) ( ) 0x v  for all ,xN  and (0) 0,v  

(ii) ( ) : ( ) 0x x
x


 


v
φ f  for all xN . 

(iii) 
1( ( , , , ))x mrank n f g gL  for all nonzero xN  satisfying ( ) 0x φ  

and ( ) 0,x   

(iv) The unique solution of the algebraic equations given by 

0, ( ) 0x
x


 



v
φ  and ( ) 0,x ψ is 0.x   

We apply the following control law 

 ( ) ( ) ,

T

x x
x

 
   

 

v
u Q G                    (25) 

where ( )xQ  is an arbitrary symmetric positive definite matrix function in .N  If 

the closed loop system of (24) and (25) has a unique solution without finite escape 

times, then the solution ( )x t  of the closed-loop system satisfies 

( ) lim ( ) 0
t

x x t


    for all initial conditions 
0(0) .x x  

Proof. It is a direct consequence of Corollary 3. ◼ 

3 Application to Quadcopter Stabilization Problem 

Firstly, an analysis of quadcopters flight dynamics is presented from the viewpoint 

of control. Thereafter the respective results of the simulation experiments and 

relevant findings are discussed. 
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3.1 Feedback Stabilizability of Nonlinear Descriptor Systems 

The nonlinear dynamic model of the quadcopter consists the following set of 

differential equations [39]: 

1 11

21

1 1 1
1 3

1

1

, ,

([cos sin cos sin sin ]

[cos sin sin sin cos ] (

[cos cos ]

, , ,,

) ,,

, ) ,

,

zz x

x y z

xx yy zz xxx

y yy yy

z zz

x

x v y v z v

p J J J qr J Uv m U

v m U q J J J pr J U

v g m U r J

       

    

    

 

 

  

 

    

        

         

      1 1

4)( .zzxx yyJ J pq J U






  





        (26) 

In here, 
1 2 3 4, , ,U U U U  are transformed angular velocities of the four propellers, 

variables , ,x y z  and , ,    represent linear and angular displacements and their 

derivatives , ,x y zv v v , respectively , , ,     are all with respect to the Earth’s 

coordinate frame. On the other hand, , ,p q r  denote angular rates with respect to 

the frame of flying body. The parameters ,m g  denote total mass and 

gravitational acceleration in the negative z-axis, and , ,xx yy zzJ J J  are the moments 

of inertia with respect to x y z   axes. In addition, the following three algebraic 

equations 

,

,

/ / ,

p s t q c t r

c q s r

s c q c c r

    

  

    







    

   

   

                                (27) 

where (.) (.),c s  and (.)t is a short notation for cos-, sin- and tan- functions, 

respectively, complete the representation model. 

In general, the equations (26) and (27) together describe the nonlinear descriptor 

system for quadcopters. Actually, the differential equation (26) corresponds to the 

differential equation (18) while the algebraic equations (27) correspond to the 

algebraic equation (19). 

Indeed, it is of the great importance how to select or construct a particular 

Lyapunov-like function for this particular problem. In order to find Lyapunov-like 

function for the system without control, i.e. for 
1 1 2( , ),x x x f  consider that all 

inputs in (26) are zero, that is. 
1 2 3 4 0.U U U U     Thus, we obtain: 

 
 

 

1

1

1

0, , ,

, 0, , ,

, , , .

,

zz xx

xz x

yy zzx x xx

y y yy

z z z yy

J Jx v v p J qr

y v v q J J J pr

J Jz v v g r J pq







 

 

 












   

    

    

         (28) 

It is well-known that the Lyapunov stability theory is in fact energy-based 

methodology. The quadcopter is a physical system and furthermore, it is an energy 
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conservative system [13]. In other words, the sum of the kinetic and potential 

energy does not change in time. Therefore, the Lyapunov-like function, v  in our 

case, is defined as 
t r  v e e  with some dimensionless tuning coefficients   

and  . Furthermore, due to the physics of quadcopter, formula 

2 2 20.5 ( 2 )t x y zm v v v gz   e  describes the translational energy of motion while 

formula 
2 2 20.5( )r xx yy zzJ p J q J r  e  describes the rotational energy. Therefore 

2 2 2 2 2 20.5 ( 2 ) 0.5 ( )x y z xx yy zzm v v v gz J p J q J r       v               (29) 

does represent the total energy in the considered plant system. In turn, for v  we 

have: 

( ) ( )x x y y z z xx yy zzm v v v v v v gz J pp J qq J rr       v  .             (30) 

Then by substituting equation (28), one can obtain 0.v  Consequently, equations 

(29) and (30) satisfy conditions (i), (ii) of Theorem 2 or else the Corollary 3. For 

the quadcopter descriptor representation (26) and (27), the selected Lyapunov-like 

function is shown to be useful for obtaining the needed control vector. Formula 

(20) along with 
1 1 2 4( , )Q x x I  gives the following stabilizing control set 

1 2 3 4, , , :u u u u  

1

2

3

4

[ ( ) ( ) ( )]

( )

( )

( )

x y zu v c s c s s v c s s s c v c c

u p s

u q c s c

u r c c s

           

  

    

    



   

   

   

     

    

    

    

                           (31)

The implementation of feedback nonlinear stabilizing control, which is actually an 

inner loop of quadcopter stabilization, has been achieved by attaching 
iu  to the 

tracking control .tciu  

i tci iU u u                                                           (32) 

where:  1, ,4 ,i    is a dimensionless tuning parameter, and 
iU  represent the 

actually applied control signals to quadcopter’s nonlinear descriptor system. The 

intended effect of the inner and outer loop is to provide for faster stabilization and 

slower trajectory tracking, respectively. 

3.2 Simulation Experiments of the Quadcopter Stabilization 

The theory of the paper has been tested on quadcopter stabilization, under the task 

of reaching the desired point in space    , , 5, 5, 10
T T

x y z   while keeping the 

quadcopter head (yaw angle) fixed, i.e. 0.   The initial posture is taken 
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 0, 0, 0
T

and 0.   The comparison on the quadcopter stabilization is conducted 

on four different simulations. The control magnitude between the tracking control 

and stabilizing control in (32) has been achieved by tuning parameters , ,    

presented on Table 1. 

Table 1 

Control magnitude tuning parameters 

 

 

 

 

The first simulation ('1') elaborates the stabilizing achieved only from the tracking 

control. Then in the following simulations, we gradually decrease the control 

magnitude of the tracking control (i.e. the parameter  ) and simultaneously 

increase control magnitude of the stabilizing feedback control (31) (i.e. the 

parameters  and  ). 

Simulation number          

1 0 0 1 

2 0.08 0.01 1 

3 0.42 0.02 0.9 

4 0.83 0.03 0.8 

 

Figure 2 

Linear displacement in the x-axis 

 

Figure 3 

Angular displacement   

 

Figure 4 

Linear Displacement in the y-axis 

 

Figure 5 

Angular displacement   
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In comparison with other simulations, in particular with simulation number 1 

(pure tracking control), simulation number 3 results on achieving a better tracking 

of quadcopter in ,x y  direction, while the height control (z-direction) it increases 

the rising time, but the settling time remains almost the same. By analyzing 

Figures 3, 5 and 7, the comparison between a pure tracking control stabilization 

and the mixed stabilization control (the simulation number 3) shows that the latter 

one improves the stabilization of the quadcopter by reducing orientation 

chattering. 

Conclusions 

In this paper, in addition to designing the nonlinear stabilizing control based on 

Lyapunov-like stability for nonlinear descriptor system, a new approach for 

representing the quadcopter, as a nonlinear descriptor system, has been elaborated. 

It is presented and demonstrated through numerical simulation, the application of 

the new approach on quadcopter stabilization. 

The presented numerical results show that the stabilization of the quadcopter has 

been improved by introducing a mixed stabilization control (tracking control + 

stabilizing control derived from Lyapunov-like stability conditions). By 

decreasing the control magnitude of the tracking control and simultaneously 

increasing the control magnitude of the stabilization control, a larger converging 

time appears, which appears to be the only drawback of this new methodology. 

Future theoretical extension of the presented results is foreseen, for the further 

enhancement of the system efficiency as argued in [37]. The other direction of 

future research will be focused on the improvement of the stabilization of the 

quadcopter towards a faster convergence and on the application toward other 

flying objects [38]. We would also like to examine the actual implementation of 

the stabilization control in a “real-world-scale” quadcopter. This is an open 

challenge, and it depends on future investment. 
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