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Abstract: In this paper, the derivative-free method for solving singular systems is compared 

with the classical finite-difference method for nonlinear systems. Since the convergence 

rate of an iterative method to singular solution drops down, the convergence can be 

accelerated by forming the bordered system. Left and right singular vectors of the finite-

difference approximation of the Jacobian are used for the construction of the bordered 

system. The local algorithm for finding a solution is tested on several examples and 

compared with the finite-difference method. The obtained numerical results, which are 

promising, indicate fast local convergence of the proposed derivative-free method and 

point out that it has better performances than the finite-difference method. 
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1 Introduction 

Consider the nonlinear system 

𝐹(𝑥) = 0,  (1) 

where 𝐹:ℝ𝑛 → ℝ𝑛, 𝐹(𝑥) = (𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑛(𝑥))𝑇 and let 𝑥∗ be the solution 

of (1). Nonsingularity of the Jacobian matrix 𝐹′(𝑥∗), namely nonsingularity of the 

problem, allows one to use Newton’s method for finding the solution of the 

system (1). Newton’s method is one of the most popular iterative methods because 

of its local quadratic convergence. However, Newton’s method is very expensive 

since in every iteration the Jacobian matrix should be calculated. That is why 
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quasi-Newton (QN) methods have been developed. In every iteration, QN 

methods use the Jacobian approximation, which is obtained by updating the 

previous one, using basic matrix operations. 

When the Jacobian matrix 𝐹′(𝑥∗) is singular, the problem is singular and the 

convergence rate of an iterative method decreases. One of the most important 

results about the convergence of Newton’s method in the singular case, [1], shows 

that the region of the acceptable initial points has changed, compared to the 

regular case. Convergence rate of the component that corresponds to the null 

space of the Jacobian 𝐹′(𝑥∗) is slower and it affects the convergence of the entire 

iterative sequence. These results were extended to singular problems having 

higher-order singularities, [2], [3]. A more detailed convergence analysis of 

Newton’s method can be found in [4], while similar results for the convergence of 

QN methods are given in [5], [6], [7]. 

To accelerate convergence to the singular solution, one can modify the method or 

modify the problem. The acceleration of Newton’s method in several ways can be 

found in [8]. Modifications of the method such as including mid-iteration or 

including second derivative, Hessian, can speed up the convergence.                  

The modifications with mid-iteration are given for Newton’s method, [9], inexact 

Newton’s method, [7], and Shamanski’s method, [10]. Based on these 

modifications, in [11], two modifications of the arbitrary QN method are 

suggested and tested for Thomas’, [12], Broyden’s, [13], and Martinez’s, [14], 

methods. The other methods which use the second derivative are proposed in [15], 

[16], [17]. 

Constructing the bordered system, the initial singular system is transformed into 

the regular one by inserting additional variables. For problems having isolated 

solutions and Jacobian rank deficiency 𝑞 = 1, the construction of the bordered 

system is proposed in [18], although the method given in [8] can be used to 

accelerate the convergence to the solution that is not singular. Under certain 

conditions, imposing additional variables to the singular problem leads to rapid 

convergence to the solution. The construction of the bordered system for the 

problems with Jacobian 𝐹′(𝑥∗) having rank deficiency 𝑞 ≥ 1 can be found in [8], 

[19], and [20]. 

In [21], the bordered system was formed using left and right singular vectors of 

the Jacobian 𝐹′(𝑥̅), where 𝑥̅ is close enough to the solution 𝑥∗. The fast local 

algorithm was proposed and its convergence to the solution of the initial problem 

was theoretically proven and applied on several numerical examples. Since in 

many applications, function 𝐹(𝑥) is not available analytically and direct 

evaluation of the Jacobian and Hessian is not possible, the bordered system and 

fast local and global algorithm for finding its solution were presented in [22], 

using finite-difference approximations. Both algorithms have very good 

characteristics, like fast local convergence around the solution. 



Acta Polytechnica Hungarica Vol. 18, No. 9, 2021 

 – 51 – 

In order to construct the derivative-free method to define a bordered system, the 

algorithm that uses left and right singular vectors of the finite-difference 

approximation of the Jacobian close to the solution is proposed in [23]�.           

The algorithm was tested on two singular examples and numerical results show 

that all good properties are preserved. In this paper, we want to compare the 

features of this algorithm with the classical finite-difference method for nonlinear 

systems since both algorithms are completely derivative-free and can be applied to 

problems when the function is not given analytically. 

The paper is organized in the following way. Some preliminaries are given in the 

second section. The third section presents the construction procedure of the 

bordered system using singular vectors of the Jacobian’s finite-difference 

approximation. The derivative-free algorithm that uses only approximations of the 

Jacobian and Hessian both in defining and solving the bordered system is also 

presented. Numerical examples are given in the fourth section, where the local 

character of the algorithm and its very fast convergence in the neighbourhood of 

the solution are illustrated and compared with the finite-difference method. 

2 Preliminaries 

This section contains some basic definitions which are necessary. 

Definition 1: [15] 

Tensor 𝑇 ∈ ℝ𝑛×𝑛×𝑛 is composed of 𝑛 horizontal faces 𝐻𝑘 ∈ ℝ𝑛×𝑛, 𝑘 = 1,… , 𝑛, 

where [𝐻𝑘]𝑖,𝑗= [T]𝑖,𝑗,𝑘. 

Products between tensor 𝑇 ∈ ℝ𝑛×𝑛×𝑛 and vector 𝑣 ∈ ℝ𝑛 are defined in the 

following way 

𝑇𝑣 = ((𝐻1𝑣)𝑇 , (𝐻2𝑣)𝑇 , … , (𝐻𝑛𝑣)𝑇)𝑇 ∈ ℝ𝑛×𝑛, 

𝑣𝑇𝑇 = (𝑣𝑇𝐻1, 𝑣
𝑇𝐻2, … , 𝑣𝑇𝐻𝑛)𝑇 ∈ ℝ𝑛×𝑛. 

For symmetric matrices 𝐻1, 𝐻2, … , 𝐻𝑛 , the product is commutative, i.e., 𝑇𝑣 =
𝑣𝑇𝑇. 

Let 𝐹′′(𝑥) ∈  ℝ𝑛×𝑛×𝑛 be the second 𝐺-derivative of 𝐹(𝑥) composed by 𝑛 

horizontal faces 𝐻𝑘(𝑥), where 𝐻𝑘(𝑥) is Hessian matrix of component 𝐹𝑘(𝑥), 
𝑘 = 1,2, … , 𝑛. Then, 

𝐹′′(𝑥)𝑣 = ((𝐻1(𝑥)𝑣)𝑇 , (𝐻2(𝑥)𝑣)𝑇 , … , (𝐻𝑛(𝑥) 𝑣)𝑇)𝑇 ∈ ℝ𝑛×𝑛. 

For  > 0, the finite-difference approximations of Jacobian 𝐹′(𝑥) and Hessian 

𝐻𝑘(𝑥), denoted by 𝐷(𝑥, ) and 𝐻𝑘(𝑥, ), are defined by 
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[𝐷(𝑥, )]𝑖,𝑗 =
𝐹𝑖 (𝑥 +  𝑒𝑗) − 𝐹𝑖 (𝑥 −  𝑒𝑗)

2
, 

 (2) 

[𝐻𝑘(𝑥, )]𝑖,𝑗=
𝐹𝑘 (𝑥+ 𝑒𝑖+ 𝑒𝑗)−𝐹𝑘 (𝑥+ 𝑒𝑖− 𝑒𝑗)−𝐹𝑘(𝑥− 𝑒𝑖+ 𝑒𝑗)+𝐹𝑘 (𝑥− 𝑒𝑖− 𝑒𝑗)

42
, 

 (3) 

for 𝑖, 𝑗 = 1,2, … , 𝑛 and 𝑒𝑗, 𝑒𝑖 being the 𝑗 −th and 𝑖 −th unit vector, respectively. 

Thus, the finite-difference approximation of 𝐹′′(𝑥) ∈  ℝ𝑛×𝑛×𝑛, denoted by 

𝐹′′(𝑥, ) ∈  ℝ𝑛×𝑛×𝑛, is composed by 𝑛 horizontal faces 𝐻𝑘(𝑥, ), 𝑘 = 1,2, … , 𝑛, 
defined by (3). 

Throughout the paper, the Euclidean norm denoted by ‖. ‖ will be used. Besides, 

the infinity norm, denoted by ‖. ‖∞,  will also be used in the fourth section. 

3 Bordered System and Algorithm 

We will assume that function 𝐹 satisfies the following conditions: 

A1: 𝐹 is twice continuously differentiable and 𝐹′′(𝑥) is Lipschitz continuous 

in some neighbourhood of the solution, ℬ(𝑥∗, ). 

A2: Jacobian 𝐹′(𝑥∗) has rank 𝑟 = 𝑟𝑎𝑛𝑘 𝐹′(𝑥∗) = 𝑛 − 𝑞, for 1 ≤  𝑞 ≤  𝑛. 

A3: There exists a nonzero vector 𝜇∗ ∈  𝑁((𝐹′(𝑥∗))𝑇) and a basis 

{𝜂1
∗, 𝜂2

∗ , … , 𝜂𝑞
∗ } of the null space 𝑁(𝐹′(𝑥∗)) such that 𝑞 × 𝑞 matrix 

[𝜂∗]𝑇[(𝜇∗)𝑇𝐹′′(𝑥∗)]𝜂∗  ≡ [𝜂1
∗, 𝜂2

∗ , … , 𝜂𝑞
∗ ]𝑇[(𝜇∗)𝑇𝐹′′(𝑥∗)][𝜂1

∗, 𝜂2
∗ , … , 𝜂𝑞

∗ ]  

is nonsingular. 

SVD factorization gives 

𝐷(𝑥̅, 𝜉) = 𝑈(𝑥̅)Σ̅(𝑥̅)𝑉̅𝑇(𝑥̅) 

= [𝑢̅1(𝑥̅), … , 𝑢̅𝑛(𝑥̅)]𝑑𝑖𝑎𝑔(𝜎1(𝑥̅), 𝜎2(𝑥̅), … , 𝜎𝑛(𝑥̅))[𝑣̅1(𝑥̅), … , 𝑣̅𝑛(𝑥̅)]𝑇 , 

where 𝑢̅1(𝑥̅), … , 𝑢̅𝑛(𝑥̅), 𝑣̅1(𝑥̅), … , 𝑣̅𝑛(𝑥̅) are left and right singular vectors and 

𝜎1(𝑥̅), 𝜎2(𝑥̅), … , 𝜎𝑛(𝑥̅) are corresponding singular values. 

Since the singular values are evaluated in descending order 

𝜎1(𝑥̅) ≥  𝜎2(𝑥̅) ≥ ⋯ ≥  𝜎𝑛(𝑥̅) ≥  0 

and singular values are well conditioned, for 𝑥̅ ∈  ℬ (𝑥∗, 𝜀) there are 𝑞 small but 

nonzero singular values 𝜎𝑛−𝑞+1(𝑥̅), … , 𝜎𝑛(𝑥̅) of 𝐷(𝑥̅, 𝜉).  

From singular vectors that correspond to small singular values 𝜎𝑟+1(𝑥̅) ≥ ⋯  ≥
𝜎𝑛(𝑥̅) ≥ 0, matrices 𝑅̅(𝑥̅), 𝐿̅(𝑥̅)  ∈ ℝ𝑛×𝑞 are formed using 
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𝑅̅(𝑥̅) = [𝑢̅𝑟+1(𝑥̅), … , 𝑢̅𝑛(𝑥̅)] 

and 

𝐿̅(𝑥̅) = [𝑣̅𝑟+1(𝑥̅), … , 𝑣̅𝑛(𝑥̅)]. 

Matrix 𝐴̅𝜉(𝑥, 𝑥̅) ∈ ℝ(𝑛+𝑞)×(𝑛+𝑞) is defined using matrices 𝑅̅(𝑥̅) and 𝐿̅(𝑥̅) 

𝐴̅𝜉(𝑥, 𝑥̅) = [
𝐷(𝑥, 𝜉) 𝑅̅(𝑥̅)

𝐿̅𝑇(𝑥̅) 0
],  (4) 

where 𝐷(𝑥, 𝜉) is an approximation of 𝐹′(𝑥) given by (2). 

For 𝑥 ∈ ℬ(𝑥∗, ) let 𝜂̅ (𝑥, 𝜉) ∈ ℝ𝑛×𝑞 , ℎ̅ (𝑥, 𝜉) ∈ ℝ𝑞×𝑞 ,  𝜇̅ (𝑥, 𝜉) ∈ ℝ𝑛 and 

𝑔̅ (𝑥, 𝜉) ∈ ℝ𝑞  be the solutions of the following systems 

𝐴̅𝜉(𝑥, 𝑥̅) [
𝜂̅ (𝑥, 𝜉)

ℎ̅ (𝑥, 𝜉)
] = [

0
𝐸𝑞

],        (5) 

𝐴̅𝜉
𝑇
(𝑥, 𝑥̅) [

𝜇̅ (𝑥, 𝜉)
𝑔̅ (𝑥, 𝜉)

] = [
0
𝛼
], 

 

 (6) 

where 𝐸𝑞 ∈ ℝ𝑞×𝑞 is an identity matrix and 𝛼 ∈ ℝ𝑞  is a randomly chosen vector. 

We expect matrix (4) to be nonsingular and obtained numerical results confirm 

that. This guarantees the uniqueness of the solutions of systems      (5) and (6). 

Using 𝜂̅ (𝑥, 𝜉) from      (5) and 𝜇̅ (𝑥, 𝜉) from (6), the 𝑞 × 𝑞 matrix 

𝐵̅𝜉(𝑥, 𝛼) ≡ 𝜂̅𝑇 (𝑥, 𝜉) [𝜇̅𝑇 (𝑥, 𝜉) 𝐻(𝑥, 𝜉)] 𝜂̅ (𝑥, 𝜉) 

is formed and it will be used in the algorithm for finding the solution of the 

bordered system. 

The bordered system is defined by 

𝑭(𝑥, 𝜆) = [
𝐹(𝑥) + 𝑅̅(𝑥̅)

𝑔̅ (𝑥, 𝜉)
] = 0,  (7) 

where 𝑔̅ (𝑥, 𝜉) is the solution of the system (6). Vector 𝜆 ∈ ℝ𝑞 corresponds to the 

relaxation parameter that makes the problem more stable, [8]. 

The local derivative-free algorithm for solving (7), proposed in [23]�, is given 

below. 

Algorithm: 

Step 0: Choose 𝑥0 ∈ ℝ𝑛 and a small parameter 𝜉 > 0. 

Step 1: Set 𝑥̅ = 𝑥0 and 𝑘 = 0. 

Step 2: Compute 𝐷(𝑥̅, 𝜉) using (2), evaluate its SVD, and determine the value of q 

to form matrices 𝑅̅(𝑥̅) and 𝐿̅(𝑥̅). 
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Step 3: Generate a random vector 𝛼 ∈ ℝ𝑞  and set 𝜆0 = 0 ∈ ℝ𝑞 . 

Repeat Step 4 – Step 7 until convergence is obtained. 

Step 4: Compute 𝐷(𝑥𝑘 , 𝜉) defined by (2) and form 𝐴̅𝜉(𝑥𝑘 , 𝑥̅) defined by (4). 

Step 5: Find solutions to the following systems 

𝐴̅𝜉(𝑥𝑘 , 𝑥̅) 𝑌 =  [−(𝐹(𝑥𝑘) + 𝑅̅(𝑥̅)𝑘)
0

], 

𝐴̅𝜉(𝑥𝑘 , 𝑥̅) [
𝜂̅ (𝑥𝑘 , 𝜉)

ℎ̅ (𝑥𝑘 , 𝜉)
] = [

0
𝐸𝑞

], 

𝐴̅𝜉
𝑇
(𝑥𝑘 , 𝑥̅) [

𝜇̅ (𝑥𝑘 , 𝜉)

𝑔̅ (𝑥𝑘 , 𝜉)
] = [

0
𝛼
]. 

Step 6: Compute the matrix 

𝐵̅𝜉(𝑥𝑘 , 𝛼) = 𝜂̅𝑇 (𝑥𝑘 , 𝜉) [𝜇̅
𝑇 (𝑥𝑘 , 𝜉) 𝐻(𝑥𝑘 , 𝜉)] 𝜂̅ (𝑥𝑘 , 𝜉) 

and solve the linear system 

𝐵̅𝜉(𝑥𝑘 , 𝛼) 𝑊 = 𝑔̅(𝑥𝑘 , 𝜉) − 𝜂̅𝑇 (𝑥𝑘 , 𝜉) [𝜇̅
𝑇 (𝑥𝑘 , 𝜉) 𝐻(𝑥𝑘 , 𝜉)] 𝑌1. 

Step 7: Update step 

[
𝑑𝑥
𝑑𝜆

] = 𝑌 + [
𝜂̅ (𝑥𝑘 , 𝜉)

ℎ̅ (𝑥𝑘 , 𝜉)
] 𝑊, 

update iteration 

[
𝑥𝑘+1

𝜆𝑘+1
] = [

𝑥𝑘

𝜆𝑘
] + [

𝑑𝑥
𝑑𝜆

] 

and update 𝑘, i.e., 𝑘 = 𝑘 + 1. 

Like in [21] and [22], it is sufficient to determine the solutions 𝑌 = [𝑌1 𝑌2]
𝑇 ∈

ℝ𝑛+𝑞 , 𝜂̅ (𝑥, 𝜉) ∈ ℝ𝑛×𝑞 , ℎ̅ (𝑥, 𝜉) ∈ ℝ𝑞×𝑞 ,  𝜇̅ (𝑥, 𝜉) ∈ ℝ𝑛 and 𝑔̅ (𝑥, 𝜉) ∈ ℝ𝑞  of the 

corresponding linear systems in Step 5 and 𝑊 ∈ ℝ𝑞 in Step 6 to update the 

iteration in Step 7. 

In [21] and [22] the bordered system was formed using SVD factorization of 

𝐹′(𝑥̅) for 𝑥̅ ∈ ℬ(𝑥∗, ), more precisely using left and right singular vectors of 

𝐹′(𝑥̅). Besides, using the Jacobian matrix 𝐹′(𝑥̅) in [21] and its finite-difference 

approximation 𝐷(𝑥̅, 𝜉) in [22], the bordered system was constructed. 

Nonsingularity of the defined system was proven and fast algorithms for solving it 

were proposed in [21] and [22]. 

The local characteristic of the algorithm given in [21] was numerically tested.     

To achieve fast convergence, the initial iterate has to be very close to the solution, 

and since the solution is usually not known this was a big disadvantage of the 

algorithm. 
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The Jacobian and Hessian matrices were approximated by finite-differences in 

[22]. Thus, the calculations of derivatives were avoided and application of the 

algorithm for problems with function, which is not defined analytically is 

included. The local convergence of the algorithm constructed in that way was 

proven. To overcome the difficulty of selecting the initial approximation, the local 

algorithm was combined with a globally convergent descent algorithm with finite-

difference approximations. In the beginning, while the current iterate is far away 

from the solution, the descent algorithm with finite-differences and Armijo rule 

was used. This prevents large steps. When the step is too small, it was assumed 

that the current iterate is close to the solution and a local algorithm was applied, 

taking the current iterate to be the initial approximation. 

The algorithms presented in [22] are not completely derivative-free since SVD of 

the Jacobian 𝐹′(𝑥̅) and the corresponding singular vectors are used to define 

bordered system. The previously defined algorithm is constructed using singular 

vectors of the finite-difference approximation 𝐷(𝑥̅, 𝜉) of Jacobian. This algorithm, 

proposed in [23], is completely derivative-free and its local characteristic is 

confirmed on some numerical examples. Furthermore, like in [22], one can exploit 

the fast local convergence of this algorithm by combining it with a globally 

convergent method, which will lead to the globally convergent derivative-free 

method. 

In this paper, the local characteristics of the proposed derivative-free algorithm are 

examined in more detail and compared with the classical finite-difference method. 

The rank deficiency q of the Jacobian 𝐹′(𝑥∗) is used for defining matrix (4) in 

Step 4 of the algorithm. The corresponding value of q is unknown and one way to 

determine this value, [20], is to overestimate it since it is known that in that case, 

any iterative sequence will not converge. The next step is to decrease the value 

until the convergence is obtained, but keeping in mind that convergence will occur 

in case the value of q is underestimated. 

The SVD decomposition of 𝐹′(𝑥̅) implies that there are 𝑞 small but nonzero 

singular values, so one can conclude that q is equal to the number of small 

singular values of finite-difference approximation 𝐷(𝑥̅, 𝜉). Since these values are 

evaluated in descending order, it is easy to count them and predict the value of q. 

4 Numerical Results 

We tested the proposed derivative-free algorithm on some relevant examples from 

[21] and [22], with different starting approximations, and compared it with the 

classical finite-difference method. The obtained numerical results are presented in 

this section. We consider that the current iterate 𝑥𝑘 generated by both algorithms 

is a good approximation of the solution if it satisfies ‖𝐹(𝑥𝑘)‖ ≤  10−6 for the 
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maximum number of iterations equal to 30. The rate of convergence is determined 

through the quotient 

𝑑𝑘 =
‖𝑥∗ − 𝑥𝑘‖

‖𝑥∗ − 𝑥𝑘−1‖
 . 

The Jacobian and Hessian are approximated by finite-differences with parameter 

𝜉 = 10−5. 

Example 1: Function 𝐹:ℝ2 → ℝ2 is defined by 

𝐹(𝑥1, 𝑥2) = [
𝑥1

2 − 𝑥2

𝑥1
2 + 𝑥2

2]. 

The singular solution of equation (1) is  𝑥∗ = (0,0)𝑇 .  The Jacobian matrix is 

𝐹′(𝑥1, 𝑥2) = [
2𝑥1 −1
2𝑥1 2𝑥2

], 

and since 

𝐹′(0,0) = [
0 −1
0 0

], 

the rank deficiency of the Jacobian at the solution is q=1. Moreover, the null 

space of the Jacobian, N(𝐹′(0,0)), is generated by 𝜂∗ = (1,0)𝑇 . One characteristic 

of singular systems is that all components do not converge at the same rate. 

Slower convergence of the components that correspond to the null space also 

slows down the convergence of the entire iterative sequence. In this example, the 

first component is slower than the second one. 

In order to examine a local characteristic of the derivative-free algorithm defined 

in the previous section, iterative sequences generated with three starting points are 

presented in the following tables. These iterative sequences are compared with the 

iterative sequences generated by the finite-difference method, using the same 

starting approximations. 

Table 1 presents the iterative sequence generated by the finite-difference method. 
Since the method is applied to the singular system, slower convergence of the first 

component is clearly indicated. The convergence rate of the finite-difference 

method drops from superlinear to linear, which is indicated through the quotient 

𝑑𝑘 that converges to 0.5. 

Table 1 

𝑥0 = (0.5,0.7)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 4.541e-01 2.041e-01 2.479e-01 0.578855 

2 2.596e-01 2.959e-02 7.808e-02 0.524862 

3 1.314e-01 8.274e-04 2.385e-02 0.502899 
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4 6.572e-02 6.918e-07 6.107e-03 0.500029 

5 3.285e-02 7.395e-12 1.526e-03 0.500038 

6 1.642e-02 7.396e-17 3.817e-04 0.500076 

7 8.219e-03 2.059e-20 9.554e-05 0.500152 

8 4.112e-03 -6.512e-21 2.385e-05 0.500304 

9 2.058e-03 2.636e-22 5.993e-06 0.500607 

10 1.031e-03 2.635e-22 1.505e-06 0.501211 

11 5.184e-04 5.187e-23 3.800e-07 0.502411 

The iterative sequence generated by our algorithm is presented in Table 2. We can 

point out that both components of the iterative sequence converge to the solution 

at the same speed, which affects the convergence of the whole iterative sequence. 

The quotient 𝑑𝑘 converges to 0, which means that superlinear convergence is 

obtained. The number of iterations needed for the convergence is smaller than in 

the case when the finite-difference method is applied. All of these indicate that our 

method is faster than the finite-difference method. 

Table 2 

=8.90903, 𝑥0 = (0.5, 0.7)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 -9.416e-02 4.026e-01 4.293e-01 0.48075 

2 1.218e-02 1.450e-01 1.463e-01 0.351867 

3 2.166e-03 3.244e-02 3.245e-02 0.223456 

4 1.774e-04 2.473e-03 2.473e-03 0.076274 

5 -1.548e-06 1.673e-05 1.673e-05 0.006775 

6 8.821e-11 7.774e-10 7.774e-10 0.000046 

Similar results are obtained for starting approximations being closer to the 

solution and generated iterative sequences are presented in Tables 3-6. Iterative 

sequences generated by the finite-difference method are given in Table 3 and 

Table 5, while Table 4 and Table 6 contain the sequences generated by our 

derivative-free algorithm. 

Table 3 

𝑥0 = (0.3, 0.4)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 2.981e-01 8.889e-02 9.679e-02 0.62224 

2 1.603e-01 6.708e-03 3.199e-02 0.515782 

3 8.030e-02 4.441e-05 9.088e-03 0.500443 

4 4.015e-02 2.423e-09 2.279e-03 0.500031 

5 2.008e-02 2.424e-14 5.699e-04 0.500062 

6 1.004e-02 2.246e-19 1.426e-04 0.500124 

7 5.023e-03 -5.733e-21 3.569e-05 0.500249 
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8 2.514e-03 1.042e-21 8.941e-06 0.500497 

9 1.259e-03 1.958e-22 2.244e-06 0.500992 

10 6.323e-04 -1.588e-23 5.654e-07 0.501977 

Table 4 

=5.85264, 𝑥0 = (0.3, 0.4)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 2.165e-02 5.342e-02 5.305e-02 0.11529 

2 5.878e-04 1.651e-03 1.651e-03 0.030412 

3 6.050e-07 1.714e-06 1.714e-06 0.001036 

4 6.508e-13 1.852e-12 1.852e-12 0.000001 

Table 5 

𝑥0 = (0.02, 0.02)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 1.962e-02 3.848e-04 3.851e-04 0.693812 

2 9.816e-03 1.518e-07 1.361e-04 0.500228 

3 4.906e-03 1.541e-12 3.405e-05 0.500255 

4 2.457e-03 1.540e-17 8.543e-06 0.500509 

5 1.231e-03 3.353e-22 2.144e-06 0.500101 

6 6.182e-04 -8.818e-23 5.404e-07 0.502022 

Table 6 

=6.99077, 𝑥0 = (0.02, 0.02)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 7.179e-04 -3.413e-04 3.418e-04 0.028106 

2 -5.090e-07 -4.919e-07 4.919e-07 0.000890 

All iterative sequences were generated with starting points close enough to the 

solution, so the convergence of both methods is obtained. Iterative sequences 

generated by the finite-difference method need more iterations for the 

convergence than our method since the system is singular and slower convergence 

of the first component slows down the convergence of the whole sequence.        

The convergence rate of sequences presented in Table 1, Table 3, and Table 5 is 

linear since 𝑑𝑘 converges to 0.5. 

The sequences generated by our derivative-free algorithm, given in Table 2, Table 

4, and Table 6, indicate that both components converge to the solution at the same 

speed. The rate of the convergence is superlinear since the quotient 𝑑𝑘 converges 

to 0. Faster convergence of our method is a consequence of the fact that the 

singular system is transformed into the regular one using the bordered system. 

To illustrate the local characteristics of the algorithm in detail, we tested it with 

much more starting points close to the solution and compared the number of 
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iterations obtained by our derivative-free method with the one required for the 

convergence when the finite-difference method is applied. The algorithms were 

tested with starting approximations of the form 

𝑥0 = ( 𝑖−
+ ∙ 0.1, 𝑗 ∙ 0.1−

+ )
𝑇
, 

for 𝑖, 𝑗 = 0, 1, . . . , 10.  Since starting points with  𝑖, 𝑗 = 0, 1, . . . , 5  are close 

enough to the solution, both algorithms have fast convergence for these initial 

points with 𝑖, 𝑗 = 0, 1, . . . , 5, so only these results are presented in Table 7. 

The first column of  

Table 7 contains the first component of the initial approximation, [𝑥0]1, while the 

first row contains the second component, [𝑥0]2. Each table field presents the 

number of iterations for our derivative-free algorithm and the number of iterations 

for the finite-difference method (given in brackets), generated with the starting 

point 𝑥0. 

Table 7 

The number of iterations for derivative-free algorithm and (finite-difference method) with initial point 

𝑥0 

 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

-0,5 30(28) 9(13) 6(12) 6(11) 6(11) 7(11) 9(11) 16(11) 30(11) 6(11) 6(11) 

-0,4 27(28) 8(13) 7(12) 7(11) 6(11) 5(10) 6(10) 6(11) 6(11) 5(11) 5(11) 

-0,3 16(28) 7(14) 7(12) 6(11) 6(10) 5(10) 5(10) 5(10) 4(11) 5(11) 5(11) 

-0,2 20(29) 7(14) 6(12) 6(11) 5(10) 5(9) 5(10) 4(10) 4(11) 5(11) 5(12) 

-0,1 18(30) 6(15) 6(13) 5(11) 5(10) 4(8) 4(9) 4(24) 4(11) 5(11) 5(12) 

0 7(4) 5(29) 4(27) 4(25) 3(23) 1(1) 3(22) 4(24) 4(25) 5(26) 5(26) 

0,1 18(30) 6(15) 6(13) 5(11) 5(10) 4(8) 4(9) 4(10) 4(11) 5(12) 5(12) 

0,2 21(29) 7(14) 6(12) 5(11) 5(10) 5(9) 5(10) 4(10) 4(11) 5(11) 5(12) 

0,3 16(28) 7(13) 7(11) 6(11) 6(10) 5(10) 5(10) 5(10) 4(11) 5(11) 5(11) 

0,4 30(28) 8(13) 7(12) 6(11) 6(11) 5(10) 6(10) 6(11) 6(11) 5(11) 5(11) 

0.5 30(28) 9(13) 6(12) 6(11) 6(11) 7(11) 9(11) 15(11) 30(11) 14(11) 14(11) 

 

Table 7 shows that our derivative-free method is much faster than the finite-

difference method for almost all starting points. 

Example 2: Function  𝐹:ℝ3 → ℝ3 is defined by 

𝐹(𝑥1, 𝑥2, 𝑥3) = [

𝑥1
3 + 𝑥1𝑥2

𝑥2 + 𝑥2
2

𝑥1
2 + 𝑥3

2

] 

with 𝑥∗ = (0,0,0)𝑇  being a singular solution of equation (1) and Jacobian matrix 

𝐹′(𝑥1, 𝑥2, 𝑥3) = [
3𝑥1

2 + 𝑥2 𝑥1 0
0 1 + 2𝑥2 0

2𝑥1 0 2𝑥3

]. 
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Null space of the Jacobian 𝐹′(0,0,0) is generated by vectors {(1,0,0)𝑇 , (0,0,1)𝑇}. 
Since 

𝐹′(0,0,0) = [
0 0 0
0 1 0
0 0 0

], 

the rank deficiency is 𝑞 = 2, so we tested our algorithm for 𝑞 = 2 and 𝑞 = 1. 

Iterative sequences generated by our method with starting approximation 𝑥0 =
(0.2, 0.5, 0.7)𝑇 and two values of q are presented in Table 8 and Table 9. 

Table 8 

q=2, =(9.59492, 6.55741)𝑇, 𝑥0 = (0.2, 0.5, 0.7)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 6.066e-03 1.335e-01 2.370e-04 1.513e-01 0.151379 

2 3.544e-03 1.409e-02 -1.192e-09 1.429e-02 0.108739 

3 4.194e-05 1.987e-04 -1.036e-08 1.988e-04 0.013975 

4 9.338e-09 4.045e-08 -1.242e-10 4.045e-08 2.043e-04 

The predicted value 𝑞 = 2 is given in Table 8. The first three columns indicate 

that all components of generated sequence converge to the solution at the same 

speed and the convergence is fast. The quotient 𝑑𝑘 converges to 0 indicating that 

the convergence rate is superlinear, as it is the rate of convergence of the finite-

difference method in regular case. 

In Table 9 the predicted value is 𝑞 = 1 and it does not coincide with the real 

value. The bordered system is formed but it is still singular. Since the first and the 

third components correspond to null space, the convergence of these components 

is visibly slower than the convergence of the second component, and this is the 

characteristic of a singular system. Linear convergence indicated with quotient 𝑑𝑘 

is the rate of convergence of the finite-difference method in a singular case. 

Table 9 

q=1, =0.357117, 𝑥0 = (0.2, 0.5, 0.7)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 -6.366e-02 1.320e-01 4.096e-01 2.279e-01 0.492652 

2 -5.903e-03 1.317e-02 2.076e-01 4.515e-02 0.478336 

3 -1.196e-04 1.609e-04 1.038e-01 1.078e-02 0.499062 

4 -4.087e-05 2.450e-08 5.193e-02 2.697e-03 0.499999 

5 -2.241e-05 -5.175e-14 2.596e-02 6.742e-04 0.5 

6 -1.274e-05 -4.681e-16 1.298e-02 1.685e-04 0.5 

7 -7.322e-06 -1.222e-16 6.491e-03 4.214e-05 0.5 

8 -3.877e-06 -5.539e-17 3.245e-03 1.053e-05 0.5 

9 -1.241e-06 -3.548e-17 1.622e-03 1.633e-06 0.5 

10 1.424e-06 -3.032e-17 8.114e-04 6.584e-07 0.5 
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Similar results are obtained when our algorithm is applied with starting points 

𝑥0 = (0.1, 0.3, 0.5)𝑇 and 𝑥0 = (0.05, 0.05, 0.05)𝑇 . Generated sequences with 

𝑞 = 2 are shown in Table 10 and Table 12, while Table 11 and Table 13 present 

sequences with 𝑞 = 1. 

Table 10 

q=2, =(7.43132, 3.92227)𝑇, 𝑥0 = (0.1, 0.3, 0.5)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 7.221e-03 5.768e-02 1.747e-05 6.100e-02 0.0982596 

2 6.399e-04 3.004e-03 -1.095e-08 3.013e-03 0.0528371 

3 1.772e-06 9.095e-06 -1.073e-09 9.095e-06 0.0030170 

4 4.958e-11 8.379e-11 -2.982e-12 8.379e-11 1.051e-05 

Table 11 

q=1, =6.55478, x0 = (0.1, 0.3, 0.5)T 

k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 -8.594e-02 5.847e-02 2.810e-01 1.064e-01 0.506488 

2 -3.820e-02 2.887e-03 1.416e-01 2.170e-02 0.489566 

3 -1.912e-02 2.929e-06 7.077e-02 5.374e-03 0.499767 

4 -4.790e-03 -2.292e-07 3.538e-02 1.343e-03 0.499977 

5 -4.790e-03 -2.843e-08 1.768e-02 3.358e-04 0.499989  

6 -2.398e-03 -3.563e-09 8.844e-03 8.396e-05 0.499994  

7 -1.201e-03 -4.460e-10 4.421e-03 2.099e-05 0.499997  

8 -6.035e-04 -5.579e-11 2.209e-03 5.247e-06 0.499999  

9 -3.043e-04 -6.978e-12 1.104e-03 1.311e-06 0.500001  

10 -1.547e-04 -8.734e-13 5.514e-05 3.280e-07 0.500005  

Table 12 

q=2, =(1.71187, 7.06046)𝑇, 𝑥0 = (0.05, 0.05, 0.05)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 -5.553e-03 2.396e-03 -5.114e-06 2.402e-03 0.0698435 

2 -7.163e-05 5.112e-06 9.571e-08 5.112e-06 0.0118738 

3 -1.248e-08 1.054e-11 1.250e-09 1.054e-11 0.0001747 

Table 13 

q=1, =0.318328, 𝑥0 = (0.05, 0.05, 0.05)𝑇 

k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 -3.161e-02 2.306e-03 2.092e-02 2.724e-03 0.438628 

2 -1.649e-02 7.491e-06 9.792e-03 3.679e-04 0.504906 

3 8.403e-03 9.893e-08 4.665e-03 9.238e-05 0.50113 

4 4.232e-03 1.321e-08 2.286e-03 2.314e-05 0.500522 

5 2.125e-03 1.705e-09 1.129e-03 5.791e-06 0.500263 



S. Buhmiler et al. Comparison of Derivative-free Method and Finite-difference Method for Singular Systems 

 – 62 – 

6 1.066e-03 2.161e-10 5.586e-04 1.448e-06 0.500136 

7 5.354e-04 2.722e-11 2.750e-04 3.623e-07 0.500081 

When the rank deficiency is underestimated, the bordered system is still singular 

and its characteristics can be recognized in Table 11 and Table 13. The quotient 

𝑑𝑘   converges to 0.5, which guarantees linear convergence and convergence of the 

first and the third components are slower than the second one. 

Faster convergence is obtained when the predicted value is equal to the real value 

of rank deficiency, i.e., 𝑞 = 2, which can be seen from Table 10 and Table 12.    

All components converge to the solution at the same speed and the convergence 

rate of the whole sequence is superlinear. 

Table 14 indicates linear convergence of the finite-difference method and presents 

the obtained results with starting approximations 𝑥0 and the number of iterations, 

𝑘, needed to achieve a good approximation of the solution. The norm of the 

function value in the last generated iteration, denoted by ‖𝐹(𝑥𝑘)‖, and the quotient 

𝑑𝑘 are also presented in Hiba! A hivatkozási forrás nem található.. Compared 

to the results presented in Table 8, Table 10 and Table 12, the finite-difference 

method requires more iterations to achieve convergence than our derivative-free 

algorithm. That was expected since for 𝑞 = 2  the iterative sequences in Table 8, 

Table 10 and Table 12 converge to the regular solution of the bordered system. 

Besides, compared to the results given in Table 9, Table 11 and Table 13, the 

finite-difference method is also slower than our derivative-free method, although 

for 𝑞 = 1 both systems are singular. 

Table 14 

𝑥0 𝑘 [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

(0.2,0.5,0.7)𝑇 15 6.973e-04 2.486e-63 -1.709e-04 5.155e-07 0.632681 

(0.1,0.3,0.5)𝑇 15 3.993e-04 1.459e-65 -4.328e-04 3.468e-07 0.509358 

(0.05,0.05,0.05)𝑇 11 9.101e-04 7.834e-51 -3.55e-04 9.543e-07 0.533782 

Example 3: Function 𝐹:ℝ4 → ℝ4 is defined by 

𝐹(𝑥1, 𝑥2, 𝑥3, 𝑥4) =

[
 
 
 
 
𝑥1 + 𝑥1𝑥2 + 𝑥2

2

𝑥1
2 − 2𝑥1 + 𝑥2

2

𝑥1 + 𝑥3
2

𝑥1
2 + 𝑥4

2 ]
 
 
 
 

. 

The solution of equation (1) is 𝑥∗ = (0, 0, 0, 0)𝑇  and the Jacobian matrix is 

𝐹′(𝑥1, 𝑥2, 𝑥3, 𝑥4) = [

1 + 𝑥2 𝑥1 + 2𝑥2 0 0
2𝑥1 − 2 2𝑥2 0 0

1 0 2𝑥3 0
2𝑥1 0 0 2𝑥4

]. 

Null space of the Jacobian 



Acta Polytechnica Hungarica Vol. 18, No. 9, 2021 

 – 63 – 

𝐹′(0, 0, 0, 0) = [

1 0 0 0
−2 0 0 0
1 0 0 0
0 0 0 0

]  

is generated by the set of vectors {(0, 1, 0, 0)𝑇 , (0, 0, 1, 0)𝑇 , (0, 0, 0, 1)𝑇}. The rank 

deficiency is 𝑞 = 3, so we tested our algorithm with 𝑞 = 3, 𝑞 = 2, and 𝑞 = 1.   
The obtained results are given in the following tables. 

Table 15show the components of the solution approximation that satisfies the 

convergence criterion generated by our algorithm with three different starting 

approximations 𝑥0. The number of iterations required to obtain this approximation 

is denoted by k, while 𝑞 is the predicted value of rank deficiency. 

Table 15 

𝑥0 = (0.4, 0.6, 0.6, 0.6)𝑇 

q k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 [𝑥𝑘]4 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 10 1.219e-13       1.710e-03     2.480e-12     -1.604e-03    4.874e-06    0.5 

2 10 -6.392e-23       8.271e-04 8.538e-19 -1.802e-18 9.675e-07    0.5 

3 4 1.892e-11     -1.545e-10     3.738e-11     6.029e-10    4.635e-11    1.315e-05    

Table 16 

𝑥0 = (0.3, 0.2, 0.2, 0.2)𝑇 

q k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 [𝑥𝑘]4 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 9 1.237e-21 7.211e-04 -1.897e-18 6.353e-04 8.389e-07 0.5 

2 9 -9.578e-23     7.160e-04     -8.334e-19     8.653e-18    8.389e-07 0.5 

3 3 3.685e-11     1.865e-10     2.176e-10     -2.361e-11    9.026e-11    6.221e-06    

Table 17 

𝑥0 = (0.2, 0.05, 0.05, 0.05)𝑇 

q k [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 [𝑥𝑘]4 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

1 10 -3.066e-24     1.781e-04     -3.252e-19     7.493e-04    5.633e-07 0.5 

2 8 3.008e-23     7.152e-04     -2.302e-16     1.790e-16    7.235e-07 0.5 

3 3 -1.435e-10     1.282e-10     1.424e-10     -1.173e-12    3.516e-10    8.405e-06 

It is clear from the tables above that underestimating the value of 𝑞 results in the 

singularity of the bordered system, so the rate of convergence is not the same for 

all components of the iterative sequence. If the predicted value is 𝑞 = 1 then the 

second component [𝑥𝑘]2 and the fourth component [𝑥𝑘]4 converge slower than the 

first and third components. Assuming 𝑞 = 2, the convergence of the second 

component, [𝑥𝑘]2, is slower than others. In both cases, the slower convergence of 

mentioned components affects the linear convergence of the whole iterative 

sequence, indicated by the quotient 𝑑𝑘 . When the predicted value is equal to the 

real value of rank deficiency, i.e., 𝑞 = 3, the superlinear convergence is obtained 

and all components converge to the solution with the same speed. 
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The results obtained using the finite-difference method for three starting 

approximations 𝑥0 are presented in Table 18. The linear convergence resulting 

from the singularity of the problem in all three cases is indicated by the quotient 

𝑑𝑘 , as well as the slower convergence of the second, third and fourth components 

of the iterative sequence. All of these point out that our method is faster than the 

finite-difference method. 

Table 18 

𝑥0 𝑘 [𝑥𝑘]1 [𝑥𝑘]2 [𝑥𝑘]3 [𝑥𝑘]4 ‖𝐹(𝑥𝑘)‖ 𝑑𝑘 

(0.4, 0.6, 0.6, 0.6)𝑇 11 -2.671e-23 3.9e-04 3.28e-04 4.48e-04 3.142e-07 0.50316 

(0.3, 0.2, 0.2, 0.2)𝑇 10 3.090e-23 3.8e-04 3.87e-04 7.47e-04 6.144e-07 0.502216 

(0.2, 0.05, 0.05, 0.05)𝑇 11 1.718e-24 1.07e-04 2.23e-04 4.97e-04 2.530e-07 0.503339 

Furthermore, we compared residuals ‖𝑥𝑘 − 𝑥∗‖∞   gained with our algorithm and 

‖𝑥𝑘 − 𝑥∗‖∞
𝑓𝑑

  when the finite-difference method is applied on a singular system, 

where 𝑥𝑘 is the approximation of the solution that satisfies the stopping criterion. 

These results are presented in the following table. 

Table 19 

The residuals 

ex 𝑥0 𝑞 ‖𝑥𝑘 − 𝑥∗‖∞ ‖𝑥𝑘 − 𝑥∗‖∞
𝑓𝑑

  

1 (0.5,0.7)𝑇 1 7.774e-10 5.183e-04 

 (0.3,0.4)𝑇 1 1.852e-12 6.323e-04 

 (0.02,0.02)𝑇 1 5.090e-07 6.182e-04 

2 (0.2, 0.5,0.7)𝑇 1 8.114e-04 6.973e-04 

  2 4.045e-08  

 (0.1, 0.3,0.5)𝑇 1 5.514e-04 4.328e-04 

  2 8.379e-11  

 (0.05, 0.05,0.05)𝑇 1 5.354e-04 9.101e-04 

  2 1.248e-08  

3 (0.4, 0.6, 0.6, 0.6)𝑇 1 4.277e-04       4.487e-04       

  2 8.271e-04        

  3 6.029e-10        

 (0.3, 0.2, 0.2, 0.2)𝑇 1 7.211e-04       7.479e-04       

  2 7.160e-04        

  3 2.176e-10        

 (0.2, 0.05, 0.05, 0.05)𝑇 1 7.493e-04       4.975e-04       

  2 7.152e-04        

  3 1.435e-10        

Table 19 points out that our derivative-free algorithm is more accurate since the 

residuals are much smaller than the residuals generated by the finite-difference 

method. This is the consequence of the regularity of the bordered system. 
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Moreover, the slower convergence of the components that correspond to the null 

space affects the slower convergence of the whole iterative sequence obtained by 

the finite-difference method. 

Considering the obtained numerical results, we can conclude that the proposed 

derivative-free algorithm is faster than the classical finite-difference method.         

It has better characteristics both in the case when the predicted value of 𝑞 

corresponds to the real value and in the case when the value of 𝑞 is 

underestimated. The number of iterations needed for the convergence is smaller 

when our method is applied and the obtained approximation of the solution is 

more accurate than the one obtained by the finite-difference method. 

Conclusions 

A local derivative-free algorithm for solving bordered system and finding a 

singular solution is compared with the classical finite-difference method for 

nonlinear systems. It is numerically shown in several examples that left and right 

singular vectors of the finite-difference approximation of the Jacobian can be used 

to define the bordered system. Numerical experiments indicate fast local 

convergence of the proposed method. Moreover, the obtained numerical results 

point out that our derivative-free method is promising, successful, and has better 

performances than the classical finite-difference method. Theoretical convergence 

of the proposed algorithm will be considered in further research. 
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