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Abstract: The paper presents three Gain-Scheduling Control (GS-C) design procedures 

starting with classical Proportional-Integral (PI) controllers, resulting in PI-GS-C 

structures for positioning control of a Magnetic Levitation System (MLS) with two 

laboratory electromagnets. The nonlinear mathematical model of the MLS is first 

linearized at seven operating points and next stabilized by a state feedback control 

structure. Three PI-GS-C structures, namely as Lagrange, Cauchy and Switching GS 

versions, are next designed in order to ensure zero steady-state control error and the 

switching between PI controllers. All control solutions are validated by real-time 

experiments. 
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1 Introduction 

One of the topics of Cognitive Info-Communications is dealing with Cognitive 

Control [1-5]. Cognitive Control is defined as [6]: “Cognitive control theory is an 

interdisciplinary branch of engineering, mathematics, informatics, control theory 

and the cognitive/social sciences. It deals with the dynamics of individual and/or 

collective cognitive phenomena. The theories and methodologies of Cognitive 

Control give control theoretical interpretations of such dynamics in order to 

explain and control cognitive phenomena, as well as to apply them in system 

control design, without necessary distinguishing between biological and artificial 

aspects.” 
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The paper focuses on a Magnetic Levitation System with a Two Electromagnets 

(MLS) positioning problem that is a kind of general description of a special type 

of object balancing. The paper would like to introduce MLS to this 

multidisciplinary cognitive control field to find synergies between this generic 

description and various different models emerging in kinematics and various 

cognitive control methods of humans. The MLS model includes complex natural 

behaviours that seem to be close to a wide class of balancing process in cognitive 

control. The opposite way is also important, when cognitive models are used in 

the control design of such balancing and positioning problems [7]. The paper 

proposes solutions to the MLS positioning problem in a way that they are general 

enough to apply for a wider class of the variations of MLS to have better matching 

to cognitive control. 

Several classical and modern control solutions have been proposed to solve the 

MLS positioning problem including the recent ones: Proportional-Integral (PI)-

based solutions are presented in [8-11], fuzzy and adaptive control solutions are 

given in [12-14] with rather general applicability and comparisons, and predictive 

control solutions are reported in [15-17]. 

Due to the fact that the linear controllers can work only in some neighbourhood of 

a single operating point, the Gain-Scheduling (GS) technique is one of the most 

common used controller design approaches for nonlinear systems. GS is popular 

nowadays in many engineering applications because the scheduling variable 

should “vary slowly” and “capture the plant’s nonlinearities” [18-20]. Some of the 

current approaches to GS are pointed out as follows: an analysis of two and three 

types of GS control (as Linear Parameter-Varying (LPV) plant scheduling on 

exogenous parameters, LPV plant scheduling on reference trajectory and LPV 

plant scheduling on plant output) for nonlinear systems and the conditions which 

guarantee the stability, robustness and performance of the overall gain-scheduled 

design are given in [19] and [20]; two GS control design procedures, which are 

supported by Lyapunov’s stability theory, are suggested in [21], they guarantee 

parameter dependent quadratic stability at a certain cost; fuzzy-based GS of exact 

feed-forward linearization control and sliding mode controllers for magnetic ball 

levitation system are proposed in [13]. A high gain adaptive output feedback 

control to a magnetic levitation system is discussed in [22]. A Proportional-

Integral Gain-Scheduling Control (PI-GS-C) system for second-order LPV 

systems, which excludes time varying delay and uses a Smith predictor, is given in 

[23]. Assuming an equilibrium manifold linearization model, a GS control method 

for nonlinear shock motion is proposed in [24]. A GS controller is designed in 

[18] on the basis of an LPV system using Lyapunov’s stability theory. GS deals in 

[25] and [26] with the adaptation of gains of a robust evolving cloud-based 

controller (RECCo) designed for a class of nonlinear processes; the robust 

modification of the adaptive laws and the performance analysis are introduced. A 

practical implementation of RECCo with normalized data space for a heat-

exchanger plant is reported in [27]. Other interesting adaptive GS control 

techniques for real practical applications are given in [28-31]. 
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This paper treats the design and real-time validation of the following control 

solutions which are able to carry out the position control of the magnetic sphere 

that belongs to MLS [32]. First of all a state feedback control solution and a 

control solution (CS) based on PI controllers are designed for each operating point 

in order to stabilize and to ensure the zero steady-state control error by applying 

the control signal only to the top electromagnet. The control signal applied to the 

bottom electromagnet is neglected because it is considered also as an exogenous 

disturbance. The new contribution of this paper with respect to the state-of-the-art 

is the real-time application of three GS controllers to MLSs. The first GS version 

is based on a generalization from the monovariable case to the multivariable one 

of the Lagrange interpolating parameter value method, the second GS version is 

based on a Cauchy kernel distance metric, and the third GS version is based on the 

switching between PI linear controllers. A comparative analysis of the proposed 

GS versions developed for stabilized Magnetic Levitation System (sMLS) is given 

to highlight the achieving of the specified control system performance. 

The GS controllers proposed in this paper are important because although the 

conclusions cannot be generalized, they are general and applicable too many 

processes. These process applications include large-scale systems [33], multi-tank 

systems [34], fuzzy modelling [35-39], robotics [40-43], fuzzy control [44, 45], 

motion control [46-48], software agents [49], discrete-event systems [50, 51]. 

The paper is organized as follows: Section 2 gives the mathematical models of the 

sMLS. Three case studies corresponding to the GS-C solutions – namely 

Lagrange, Cauchy and Switching GS – are presented in Section 3. The 

experimental results and the control performance are presented in Section 4. The 

conclusions are highlighted in Section 5. 

2 Mathematical Models of Magnetic Levitation 

System 

The controlled plant taken into consideration in this paper is the complete control 

laboratory system built around the MLS. The MLS laboratory equipment includes 

both hardware and software components: two electromagnets (EM1 – the upper 

electromagnet and EM2 – the lower electromagnet), the ferromagnetic sphere, 

sensors to detect the position of the sphere, computer interface, drivers, power 

supply unit, connection cables and an acquisition board of type RT-DAC4 / PCI. 

When both electromagnets (EM1 and EM2) are used, the control signal applied to 

EM2 can be used as an additional force leading to multivariable control systems. 

This feature is also useful in robust applications. Moreover, EM2 can be 

considered as a cause of disturbance inputs that act as external force excitations.  
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The schematic diagram of the MLS laboratory setup is presented in Figure 1, 

where m is the mass of the sphere, Fem1 and Fem2 are the electromagnetic forces, 

and Fg is the gravity force [32]. 

The nonlinear state-space mathematical model of MLS is [32]: 

 

Figure 1 

The MLS laboratory setup 
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This model corresponds to a strongly unstable fourth-order system, where: x1[0, 

0.0016] – the sphere position (m), v  – the sphere speed (m/s), iEM1, 

iEM2[0.03884, 2.38] – the currents in EM1 and EM2, respectively (A), uEM1, 

uEM2[0.00498, 1] – the signals applied to EM1 and EM2, respectively (V), and y 

– the process (plant) output (m). The MLS plant includes both actuators and 

sensors. 

The numerical values of the process parameters are determined analytically and 

experimentally [32] and get the following values: Ds=0.06 is the diameter of the 

sphere, xd =0.09 [m] is the distance between electromagnets minus sphere 

diameter, g=9.81 [m/s2] is the gravity acceleration, m=0.0571 [kg] is the sphere 

mass, the parameters ki=0.0243 [A] and ci=2.5165 [A] correspond the actuator 
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dynamic analysis, FemP1=1.752110–2 [H], FemP2=5.823110–3 [m], fiP1=1.414210–4 

[ms], fiP2=4.562610–3 [m]. 

The nonlinear fourth-order system (1) is reduced to a third-order system 
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with the following state variables: the position x1, the sphere speed v and the 

current iEM1 in EM1 in terms of neglecting EM2. The signals iEM2=0.039 and 

uEM2=0.005 create disturbances. 

The characteristics of the sphere position sensor and of the coil current are shown 

in Figure 2 (a) and (b), respectively. To build the above characteristics it is 

necessary to measure the position and the current of the electromagnet coil. The 

electromagnetic {force  position} and {force  coil current} diagrams are 

illustrated in Figure 3 (a) and (b), respectively. 

 

(a)       (b) 

Figure 2 

Characteristics of sphere position sensor (a); characteristics of coil current sensor (b) 

 

(a)       (b) 
Figure 3 

Electromagnetic force vs. position diagram (a); electromagnetic force vs. coil current diagram (b) 
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Taking into account the particularity of the nonlinearities (continuity and 

monotony), the structural properties of the process are checked with reference to 

the state-space mathematical model (2) linearized at seven operating points (o.p.s). 

The following state-space linearized mathematical models (LMMs) are obtained: 
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with the matrix parameters 
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where 7,1j  is the index of the operating point Tj
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zone of the sphere position sensor characteristics shown in Figure 2 (a) as it is 

advised to avoid choosing operating points from the characteristics’s extremities, 
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where 7,1,/
3,1
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
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
, I is the third-order identity matrix and the time 

constants of the plant are 7,1,3,1,/1 )()(   jpT jj . The plant poles 

7,1,3,1,)(  jp j 
 of the t.f.s. )()( sH j

sMLS
 at seven operating points are 

synthesized in Table 1 [52]. 

Table 1 

Operating points and plant poles 

Operating 

points 
)( jP , 

7,1j  

State variables 
Control 

signals 

Plant poles 

7,1,3,1,)(  jp j  
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EMi  
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2

jp  )(

3

jp  

)1(P  0.0063 0 1.2185 0.48 67.49 -67.49 -128.34 

)2(P  0.007 0 1.145 0.45 59.72 -59.72 -149.62 

)3(P  0.0077 0 1.07 0.42 52.55 -52.55 -174.43 

)4(P  0.0084 0 1 0.39 46.25 -46.25 -203.36 

)5(P  0.009 0 0.9345 0.36 41.05 -41.05 -231.94 

)6(P  0.0098 0 0.89 0.34 36.5 -36.52 -276.39 

)7(P  0.0105 0 0.83 0.32 32.06 -32.06 -322.22 

3 Control Solutions Design 

3.1 Design of the State Feedback Control Solution 

The MLS was stabilized using the pole placement method [53] in order to support 

the development of the proposed control solution. Therefore, the closed-loop 

system poles }94.231,05.41,81.31{* p  were imposed for the linearized 

models because they can ensure both the stability of the linearized plant and the 

appropriate state feedback gain matrix to move and keep the sphere at the desired 

position with respect to EM1. Each set of parameters 7,1,)( jjT

ck  was tested on 

the laboratory setup and the best case was obtained for the state feedback gain 

matrix ]15.062.163.66[
)5(

 T

c

T

c kk  (corresponding to the operating 

point )5(P ). The performance indices are not acceptable. 
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The obtained state feedback gain matrix T

ck  was next applied to the LMMs (3) 

and the following state-space model of the sMLS resulted: 
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Two types of transfer functions (t.f.s) of the sMLS, )()( sH j
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, were obtained: 
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and the parameters are given in Table 2. 

3.2 Design of PI Controllers 

Since the sMLS does not contain an I component, so it could not ensure the zero 

steady-state control error, the sMLS was included as controlled plant in a cascade 

control structure (CCS) with PI controller in the outer loop. Seven control 
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solutions with PI controllers have been designed using the pole-zero cancellation 

method [52] depending on the operating points and on the transfer functions (8). 

The expressions of the t.f.s of the designed PI controllers are rewritten as [52, 54-

56]: 
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The continuous PI controller (9) is discretized using Tustin’s method with the 

sampling period Ts=0.00025 s. Seven discrete-time PI controllers with the 

following t.f.s are obtained: 
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where 1z  is the backward shift operator. The numerical values of tuning 

parameters and the performance indices of the control systems with PI controllers 

(from the points of view of overshoot and settling time) are presented in Table 2. 

3.3 Gain-Scheduling Control Solutions Design 

After the design of the discrete-time PI controllers (11) for seven operating points, 

three GS control solutions, namely Lagrange, Cauchy and Switching GS, are 

developed in order to improve the control system performance: 

),1()()()()1()( 1011  kekqkekqkuku xx
 (12) 

where k is the discrete time argument, e(k)=r(k)–y(k) is the control error sequence, 

y(k) is the process output sequence, r(k) is the reference input sequence, 

}1,0{),( ikqi
 are the discrete-time PI controller tuning parameters extended with 

a first-order lag filter: 

),()1()( , kqkqkq GSiii   (13) 

the parameter }5.0,4.0,3.0,2.0,1.0{  controls the transition speed between 

different controller parameters, and )(, kq GSi
 are regarded as reference inputs 

calculated as follows. 
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The detailed block diagram of these three GS versions are given in Figure 4 with 

focus on sMLS. 

Table 2 

sMLS parameters and PI tuning parameters 

Operating 

points 
)( jP , 

7,1j  

sMLS parameters Continuous 

PI-C tuning 

parameters 

Discrete PI-C 

tuning 

parameters 

)( j

sMLS
k  )(

1

j

xT  )(

2

j

xT  )(

3

j

xT  )( j  )( j

etaxT  )( j

ck  
)( j

cT  )(

0

jq  )(

1

jq  

)1(P  0.084 0.0988 - - 0.6 0.0077 38.69 0.099 3.8337 -3.8240 

)2(P  0.065 0.0778 - - 0.7 0.0078 48.69 0.078 3.8000 -3.7878 

)3(P  0.054 0.0618 - - 0.9 0.0081 57.48 0.062 3.5673 -3.5529 

)4(P  0.046 0.0485 0.0123 0.0061 - - 29.73 0.049 1.4491 -1.4416 

)5(P  0.041 0.0314 0.0244 0.0043 - - 21.55 0.031 0.6828 -0.6774 

)6(P  0.038 0.0033 - - 0.9 0.0308 40.99 0.031 1.2719 -1.2617 

)7(P  0.034 0.0026 - - 0.7 0.0332 4.43 0.033 1.8599 -1.8460 

 

 

Figure 4 

Block diagram of GS versions for the sMLS system 

Let T

EMEM uivxP ),,,( 111  be the current operating point and |||| )( jPP  be the 

Euclidean distance between the current point P and the nearest operating point P(j) 

The first proposed GS version, namely Lagrange GS version, is based on a 

generalization of the monovariable case [24] to the multivariable case (the current 

operating point is in the form of T

EMEM uivxP ),,,( 111 ) of the Lagrange 

interpolating parameter value method: 

},1,0{,
1

)(

1

)(

)(

, 
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


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

iqq
n

j

j

in

j

j
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j
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 (14) 



Acta Polytechnica Hungarica Vol. 15, No. 5, 2018 

 – 99 – 

where 


 


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n

jll
lj

l
j

LGS
PP

PP

,0
2)()(

2)(
)(

||||

|||| , (15) 

the superscripts j denote different operating points, 7n , LGS is Lagrange GS 

version, and all coefficients )( j

LGS  in the first summation in (14) are normalized to 

add up to 1. 

The second GS version is based on a Cauchy kernel distance metric [25-27] 

resulting in the Cauchy GS control solution. As shown in (13), this approach 

directly takes into account all previous data samples: 

},1,0{,
1

)(

1

)(

)(

, 
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



























iqq
n

j

j

in
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j
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 (16) 

where 

,
||||1

1

1
2)(

)( 
 
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n

j
j

j

CGS
PP

 (17) 

and CGS is Cauchy GS version. 

The third GS version is different to the first two ones as it is based on the 

switching between PI controllers and the PI controller tuning parameters 

correspond to the nearest operating point during the real-time experiments. The 

selection is supported by the Euclidean distance metric resulting in: 

},1,0{,
1

)(

1

)(

)(

, 



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




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 (18) 

where 

},1,0{,||||minarg, 2)(

,1

*)(

,

*




iPPjqq j

nj

j

iSGSi
 (19) 

and SGS is Switching GS version. 
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4 Experimental Results 

All control structures, namely with Lagrange GS, Cauchy GS and Switching GS 

versions, were tested on the nonlinear laboratory MLS system. Three reference 

input step-type modifications ),,( 321 RRR  with respect to the EM1 were 

considered on a testing period of 20 s. The mean squared error 
mseJ  is computed 

for all three GS versions 

,))()((
1

J
1

2

1mse 



N

t

dd

d

txtr
N

 (20) 

where )(1 dtx  is the real position of the sphere at time moment td=1…N, and 

N=80000 is the number of samples. The performance index 
mseJ  is measured after 

carefully experimenting with the controllers in the proposed order {Lagrange, 

Cauchy, Switching, Lagrange, Cauchy, Switching, …}, to ensure that the time-

varying parameters of the equipment uniformly affect all controllers. The boxplot 

statistics of Jmse over   for the Lagrange, Cauchy and Switching GS versions are 

presented in Figure 5 as the result measured after ten measurements. 

A comparative analysis of 
m seJ  over five values of   for the designed GS 

versions, illustrated in Figure 6, highlights that the worst performance is noticed in 

the Lagrange GS version and the best performance was obtained in the Cauchy GS 

version in most cases of  . Moreover, the results indicate that for 3.0  the best 

performance was obtained by the control solution with the third GS version. 

Five real-time experimental scenarios were conducted for three step type 

modifications of the reference input. All results include the evolutions of sphere 

position x1(t) versus time t for Lagrange, Cauchy and Switching GS control 

solutions designed for sMLS with 1.0  in Figure 6, 2.0  in Figure 7, 

3.0  in Figure 8, 4.0  in Figure 9, and 5.0  in Figure 10. 

The following conclusions are drawn by the analysis of the plots given in Figures 

6 to 10: (1) The zero steady-state control error is ensured in all versions and also 

the reference input is well tracked. (2) Due to the nonlinearities of the plant and to 

the presence of the complex conjugated poles in the cases of the operating points 

P(1)–P(3), P(6) and P(7), some oscillations occur at the beginning of transient 

responses and during the real-time experiments. (3) The proposed control 

structures design and the obtained results depend on the choice and number of 

operating points. 
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Figure 5 

Boxplot statistics of Jmse over   for the Lagrange, Cauchy and Switching GS versions, for 10 

measurements. Outliers are in red 

 

Figure 6 

Sphere position x1(t) versus time t for Lagrange, Cauchy and Switching Gain-Scheduling control 

solutions designed for sMLS with 1.0  

Conclusions 

The paper has presented the design of three nonlinear gain-scheduling control 

solutions developed in order to control the position of the sphere in an MLS. All 

control system structures were tested on the nonlinear model accepting the main 

values of the parameters given in [32]. Three gain-scheduling control solutions 

were developed to capture the process nonlinearities and to switch from one PI 

controller to another one while varying slowly. 

The real-time experimental results prove that the GS solutions guarantee the 

improvement of control system performance in terms of step modifications of the 

reference input. 
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Figure 7 

Sphere position x1(t) versus time t for Lagrange, Cauchy and Switching Gain-Scheduling control 

solutions designed for sMLS with 2.0  

 

Figure 8 

Sphere position x1(t) versus time t for Lagrange, Cauchy and Switching Gain-Scheduling control 

solutions designed for sMLS with 3.0  

They ensure zero steady-state control error, small settling times and small 

overshoots. The values of the mean squared error are small because the order of 

magnitude of the references input and the controlled output (the sphere position) is 

millimetres. 

Future research will be focused on the design of the control systems with other 

gain-scheduling control solutions to make comparisons between them, on the 

design of the control systems with PI(D) fuzzy gain-scheduling controllers, and 

combined control solutions, which can ensure the improvement of the 

performance indices. Different modelling and optimization methodologies will be 

used. 
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Figure 9 

Sphere position x1(t) versus time t for Lagrange, Cauchy and Switching Gain-Scheduling control 

solutions designed for sMLS with 4.0  

 

Figure 10 

Sphere position x1(t) versus time t for Lagrange, Cauchy and Switching Gain-Scheduling control 

solutions designed for sMLS with 5.0  
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