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Abstract: In the present paper we investigate the dynamic properties of a specific class of
nonlinear delay-differential equations by studying the asymptotic behavior of their
solutions by means of Lyapunov’s exponent. Systems of delay-differential equations can be
used to model recurrent neural networks.

Keywords: Neural networks, Lyapunov’s exponent, Cauchy’s matrix, Neurodynamical
system.

1 Introduction

The stability of nonlinear dynamical system is a difficult issue to deal with. When
we speak of stability in the context of nonlinear dynamical system, we usually
mean stability in the sense of Lyapunov. A. M. Lyapunov (see [10]) presented the
fundamental concepts of the stability theory known as the first method of
Lyapunov. This method is widely used for the stability analysis of linear and
nonlinear systems, both time-invariant and time-varying. As such it is directly
applicable to the stability analysis of neural networks. The study of
neurodynamics may follow one of two routes, depending on the application of
interest:

1 Deterministic neurodynamics, in which the neural network model has a
deterministic behavior. In mathematical terms, it is described by a set of
nonlinear delay-differential equations that define the exact evolution of the
model as a function of time.

2 Statistical neurodynamics, in which the neural network model is perturbed
by the presence of noise. In this case, we have to deal with stochastic
nonlinear differential equations, expressing the solution in probabilistic
terms. The combination of stochastic and nonlinearity makes the subject
more difficult to handle.



In this paper we restrict ourselves to deterministic neurodynamics.

2 Definitions of Lyapunov’s Exponent

In order to proceed with the study of neurodynamics, we need a mathematical
model for describing the dynamics of nonlinear system. A model most naturally
suited for this purpose is the so-called state-space model. According to this model,
we think in terms of a set of state variables whose values are supposed to contain
sufficient information to predict the future evolution of the system. Let

X (0, %0, ... X, (0) denote the state variables of a nonlinear dynamical system,
where continuous time t is the independent variable and n is the order of system.
The dynamics of a large class of nonlinear dynamical systems may then be cast in
the form of a system of first-order delay-differential equations written as follows:
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where all functions P (t), 0y (t), I, (t) are assumed to be continuous functions of

time,
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This system of delay — differential equations can be used to model neural
networks.

The initial value problem (IVP) for (1) is defined as follows:
On the initial set E, = {t—7:t-7<t,te <t0,oo)} u{t,}
let a continuous initial vector functions g(t) = (¢, (t), ¢, (t), 0, (1), ...,¢, (1))

be given.
We have to find the solution x(t)eC" (<t0,oo)) of (1) x(t) = (X, (1), X, (1), .... X, (1)) >
satisfying
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Under the above assumptions, the initial value problem (1), (2) has exactly one
solution on the interval <t0,oo) where



(pj(t):XjJrlOl//j(t)? Xj+1(t0):Xj+10’ l//j(to):L J :O7 17"'5 n-1.

In the following we consider the system of nonlinear delay-differential equations
of the form

d n n .
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Definition 1.1 A superior Lyapunov’s exponent of a vector function x(t) is

called a real number 4 which is defined by

A= limsup(%lon(t)H]-
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Definition 1.2 A inferior Liapunov’s exponent of a vector function x(t) is called

areal number 4 which is defined by
o1
A= lnttlglf[{lon(t)Hj
where
HXH = \I(X’X) and (Xa y) = inyl :
i=1

Definition 1.3 A superior central exponent of Cauchy’s matrix of a linear
differential system is called a real number Q which is defined by
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Definition 1.4 A inferior central exponent of Cauchy’s matrix of a linear
differential system is called a real number @ which is defined by
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We have to find the norm of Cauchy’s matrix of the linear differential system by
using the following formula
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where we have to search a maximum element of a set of all solutions of the linear
differential system.

HX(t,S]‘ = max



Choose any nontrivial solution w(t)= (w1 (t),w, (t), ..., w, (t)) of the set of all
solutions of (3).

If g, (t) denotes p, (t)+q;(t)v,(t), =L2,..,n, j=12,..n

):

then W(t) is the solution of the linear differential system

and v, (t) denotes %(\wj (t—7)+1|—|w, (t-7)-1
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too. The equality

a5 (1) = py (1) + g (1)v; (1) ®)

implies the fact that all coefficients a, i (t) are continuous functions of time and

‘vj (t)‘ <1, te <0,+oo),

<p+q=a, O<a<+owo.
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Theorem 1.1 Let acR satisfies the inequality (6). Then, every nontrivial
solution y(t) of nonlinear differential system (3) satisfies the inequality

e*a(‘*‘o) < Hy(t)H < ea("‘”), t> tO . (7)

Proof: Due to the fact that all constants a do not depend on the parameter w, there
suffices to prove this theorem for all nontrivial solutions of (4).

In the first part of the proof we show that any nontrivial solution y(t) of (4)
satisfies the inequality
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Make the modify of the left hand side of (8) gives
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The first part of the proof is complete.



In the second part of the proof multiplying both sides of this inequality by Hy[t]H’z ,

one may obtain
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Integration of (9) gives
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Consequently,
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Notice that the solution w(t) satisfies the inequality (7), too.

The proof'is complete.

Remark: Implicit in this theorem is the fact, that if y(t) satisfies the inequality

(7) then Lyapunov's exponents satisfy the inequality

—_a<w<i<i<Q<a.
Conclusion

Lyapunov’s exponents are important in the study of a asymptotic behavior of
solutions nonlinear differential equations. Nonlinear dynamical systems order
greater than 2 have the capability of exhibiting a chaotic behavior that is highly
complex. Lyapunov’s exponents can be used to study a chaotic behavior of
solutions of neurodynamical systems, too.
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