
Text Categorization and Support Vector 
Machines 

István Pilászy 
Department of Measurement and Information Systems 
Budapest University of Technology and Economics 
e-mail: pila@mit.bme.hu 

Abstract: Text categorization is used to automatically assign previously unseen documents 
to a predefined set of categories. This paper gives a short introduction into text 
categorization (TC), and describes the most important tasks of a text categorization system. 
It also focuses on Support Vector Machines (SVMs), the most popular machine learning 
algorithm used for TC, and gives some justification why SVMs are suitable for this task. 
After the short introduction some interesting text categorization systems are described 
briefly, and some open problems are presented. 

Keywords: Text Categorization, Machine Learning, Support Vector Machines, Information 
Retrieval. 

1 Introduction 

Nowadays through the sudden growth of the Internet and on-line available 
documents, the task of organising text data becomes one of the principal 
problems. A major approach is text categorization, the task which tries to 
automatically assign documents into their respective categories. TC is used to 
classify news stories, to filter out spam and to find interesting information on the 
web. Until the late ’80s the most popular methods were based on knowledge 
engineering, i.e. manually defining a set of rules encoding expert knowledge. In 
these days the best TC systems use the machine learning approach: the classifier 
learns rules from examples, and evaluates them on a set of test documents. 

1.1 Supervised Machine Learning 

The task of supervised machine learning is to learn and generalize an input-output 
mapping. In case of text categorization the input is the set of documents, the 
output is their respective categories. Consider the example of spam filtering: the 
input is emails and the output is 0 or 1 (i.e. spam or not spam), and a simple spam 



filter may use the following rule: “an email is spam if and only if it contains the 
expression »this is not a spam«”. 

1.2 Learning and Testing Phase 

The input-output mapping used to classify examples is called a model. Inducing 
such a model from examples (input-output relationships) is called learning, and 
these examples are called learning examples. After learning one wants to evaluate 
or use the model on another set of examples – test examples – this is called 
testing. 

2 Text Categorization as a Supervised Machine 
Learning Problem 

Supervised machine learning methods prescribe the input and output format. 
Mostly the input space is a vector space, the output is a single real number, or 
boolean (positive/negative). Machine learning algorithms use so-called features, 
i.e. questions that depend on the learning examples, e.g. how many times does that 
document contain the word “money”. Each feature corresponds to one dimension 
of the vector space. 

2.1 Transforming Text Documents into Vector Space 

Text documents in their original form are not suitable to learn from. They must be 
transformed to match the learning algorithm's input format. Because most of the 
learning algorithms use the attribute-value representation, this means transforming 
it into a vector space. 

First of all, documents need to be pre-processed. This usually means stopword 
filtering for omitting meaningless words (e.g. a, an, this, that), word stemming for 
reducing the number of distinct words, lowercase conversion etc. 

Then the transformation takes place. Each word will correspond to one dimension, 
identical words to the same dimension. Let the word wi correspond to the ith 
dimension of the vectorspace. The most commonly used method is the so-called 
TF•IDF term-weighting method [1]. Denote TFIDF(i,j) the ith coordinate of the 
jth transformed document. 

)(DF
log)(IDF

)(IDF),(TF),(TFIDF

i
Ni

ijiji

=

⋅=

 



Where TF(i,j) means how many times does the ith word occur in the jth document, 
N is the number of documents, and DF(i) counts the documents containing the ith 
word at least once. 

The transformed documents together form the term-document matrix. It is 
desirable that documents of different length have the same length in the vector 
space, which is achieved with the so-called document normalization: 

β β∑
=′

i
jiTFIDF

jiTFIDFjiFTFID
),(

),(),(

 
The dimensionality of the vector space may be very high, which is 
disadvantageous in machine learning (complexity problems, overlearning), thus 
dimension reduction techniques are called for. Two possibilities exist, either 
selecting a subset of the original features, or merging some features into new ones, 
that is, computing new features as a function of the old ones. 

3 Supervised Machine Learning Algorithms for Text 
Categorization 

After pre-processing and transformations, a machine learning algorithm is used for 
learning how to classify documents, i.e. creating a model for input-output 
mappings. 

A linear model is a model that uses the linear combination of feature-values. 
Positive/negative discrimination is based on the sign of this linear combination. 

There are more sophisticated models – decision trees, neural networks, etc. –, 
however it is interesting that in case of TC a linear model is expressive enough to 
achieve good results. 

There is a lot of linear models: perceptron, logistic regression, naïve bayes, 
support vector machines. 

Naïve bayes is very popular among spam filters, because it is very fast and simple 
for both training and testing: it has optimal training and testing time in the O() 
sense (proportional to read through the examples), simplicity to learn from new 
examples and the ability to modify an existing model. 

Support Vector Machines (SVMs) have been proven as one of the most powerful 
learning algorithms for text categorization [3]. 



3.1 Support Vector Machines 

SVMs are a generally applicable tool for machine learning. Suppose we are given 
with training examples xi, and the target values yi�{-1,1}. SVM searches for a 
separating hyperplane, which separates positive and negative examples from each 
other with maximal margin, in other words, the distance of the decision surface 
and the closest example is maximal (see Fig. 1). 

Margin 
Figure 1 

The optimal decision surface with maximal margin vs. a non-optimal decision surface 

The equation of a hyperplane is: 

0=+ bT xw  
The classification of an unseen test example x is based on the sign of wT x + b. The 
separator property can be formalized as: 

1 iff1
1 iff1
−=≤+
+=≥+

ii
T

ii
T

yb
yb

xw
xw

 
The optimization problem of SVM is the following: 

Minimize over (w,b) the value of wwT⋅2/1 subject to: 

1][:1 ≥+∀ = by T
i

n
i ixw  

The optimal w hyperplane has the minimum expected error of classification on an 
unseen and randomly selected example. 

SVM can be generalized to handle non-separable cases in two way. First, with 

slack variables: minimize over (w,b) the value of 
∑
=

⋅+⋅
n

i
i

T C
1

2/1 ξww
subject to: 

i
T

i
n
i by ξ−≥+∀ = 1][:1 ixw  

Where C is a constant to trade off between margin and training error. 



Second, with kernel functions. Let K(xi,xj) denote a function that roughly 
speaking gives how similar two examples are. This is called a kernel-function if it 
satisfies the Mercers’s condition [9]. The simplest case is when K(xi,xj)=xi

T·xj, but 
more complicated cases makes SVM suitable for non-linearly separable problems. 
The optimization problem is described in [9]. 

An interesting property of SVM is that the normal of the decision surface is a 
linear combination of examples. This means, that the decision function can be 

written in the following form:
)),((sign)(

1
bKyxf

N

i
iii +⋅⋅= ∑

=

xxα
 [9]. 

Machine learning algorithms tend to overlearn when the dimensionality is high, 
for example when more dimension exists than example. SVM avoids this, because 
it does not combine features, but it linearly combines a function of the examples. 

4 Text Categorization Tasks and their 
Characteristics 

There are numerous tasks that can be automated with text categorization methods. 
The most important tasks are: 

• Document Organization: for example organizing patent documents into 
categories for browsing 

• Text Filtering: “»Text filtering is the activity of classifying a stream of 
incoming documents dispatched in an asynchronous way by an information 
producer to an information consumer«”[10] 

• Document routing: “documents are to be assigned to one of two categories, 
relevant or non-relevant” [11]. 

• Spam filtering is a kind of document routing, with two categories: spam and 
not spam. Note that spam filtering is a cops and robbers game. 

• Hierarchical categorization, web-directory building. “Webpage categorization 
has two essential peculiarities: the hypertextual nature of the documents, the 
hierarchical structure of the category set” [10] 

Tasks that use similar techniques to text categorization: 

• Word sense disambiguation: depending on the context of an ambiguous word, 
decide in which sense was it used. 

• Information extraction (classifying extracted parts of texts): find company 
names, person names, places, etc. in text. 



• Information retrieval: search engines may classify documents to be relevant or 
non-relevant for a given query, based on user feedback. 

4.1 Common Characteristics 

There are some characteristics of TC tasks that must be kept in mind when 
building a TC system. Some reasons, why machine learning is not suitable for text 
categorization: 

• ML algorithms typically use a vector-space (attribute-value) representation of 
examples, mostly the attributes correspond to words. However word-pairs or 
the position of a word in the text may have considerable information, and 
practically infinitely many features can be constructed which can enhance 
classification accuracy. That is why fighting against spam is so hard. 

• Categories are binary, but we would not assign documents so precisely. Often 
we would say about a document D that it belongs a bit to category X1 and a bit 
to category X2, but it does not fit well into any of the two, it would rather 
require a new category, as it is not similar to any of the documents seen before. 

• There is an increasing number of words if we increase the number of 
documents. Heaps' law describes how the number of distinct words increase if 
we increase the size of a document-collection: V=K·Nβ, where V denotes the 
number of distinct words, N is the number of words in the collection, K and β 
are constant factors depending on the text and determined empirically [12]. 

• Representations use words as they are in texts. However, words may have 
different meanings, and different words may have the same meaning. The 
proper meaning of a word can (if can) be determined by its context, or in other 
words each word influences the meaning of its context. However, the usual 
(computationally practical) representation neglect the order of the words. 

In exchange for the information loss caused by the representation, we can use a 
mathematically well-founded, efficient, practical algorithm, the SVM, and the 
representation is compact. 

The transformation must aim at saving as much useful information as it can, if it is 
computationally feasible. Examples: instead of counting just the words, we can 
count word-pairs too, or counting exponentially-many features with dynamic 
programming, using an appropriate kernel function [13]. 

4.2 Benefits of SVM 

SVMs can handle with exponentially or even infinitely many features, because it 
does not have to represent examples in that transformed space, the only thing that 
needs to be computed efficiently is the similarity of two examples. Redundant 



features (that can be predicted from another features), and high dimension are 
well-handled, i.e. SVM does not need an aggressive feature selection. 

There are error-estimating formulas, which can help us in predicting how good a 
classification of an unseen example will be, elliminating the need for cross-
validation techniques. 

Joachims sums up why SVMs are good for TC [3]: 

• High-dimensional input space. 

• Few irrelevant features: almost all feature contain considerable information. 
He conjectures that a good classifier should combine many features and that 
aggressive feature selection may result in a loss of information. 

• Document vectors are sparse: despite the high dimensionality of the 
representation, each of the document vectors contain only a few non-zero 
element 

• Most text categorization problems are linearly separable. 

5 Evalutating Text Classifiers 

Text categorization systems may make mistakes. We want to compare different 
text classifiers to decide which one is better, that is why performance measures are 
for. Some of them measures the performance on one binary category, others 
aggregate per-category measures, to give an overall performance. 

Denote TP, FP, TN, FN the number of true/false positives/negatives. The most 
important per-category measures for binary categories are [10]: 

• Precision: p=TP/(TP+FP) 

• Recall: r= TP/(TP+FN) 

• Fβ-measure: 
∞<<

+⋅
⋅⋅+

= β
β
β

β 0)1(
2

2

rp
rpF

 

• precision-recall breakeven point (PRBP): we choose the TP mostly positive 
document, considering them as positive, and the rest as negative. We then 
calculate the precision and recall values, which will be equal in this case (ie. 
FP=FN). 

The most important averages are: micro-average, which counts each document 
equally important, and macro-average, which counts each category equally 
important (see [10] for details). 



5.1 Some Results from the Literature 

The mostly used document collection is the Reuters-21578 corpora. The 
“ModApte” split leads to 9603 training documents, 3299 test documents, 90 
categories with at least one training and one test example, and approx. 10000 
distinct term. A simple TFIDF representation, eucledian normalization and linear 
SVM was enough to achieve 84.2% micro-averaged PRBP. With polynomial 
kernels – where K(xi,xj)=(xi

T·xj)n – of degree n=4, 86.2% was achieved [3]. 

Another frequently used corpora is the 20-newsgroups text corpora, consistsing of 
20000 messages taken from 20 newsgroups [5]. 

6 Kinds of Text Categorization Systems 

6.1 Hierarchical Text Categorization Systems 

A potential drawback of treating the category structure as flat is that the number of 
training examples for individual classes may be relatively small when dealing with 
a large number of categories [6]. Categories may form a hierarchical structure – 
e.g. patent documents, web catalogs – which can be exploited by advanced 
techniques, for example by using the divide and conquer approach: solving 
classification problems at each branch, yielding into fewer classes and more 
examples at higher levels, and fewer classes at lower levels. 

6.2 Transductive Support Vector Machines 

The presented supervised learning scheme is an inductive learning scheme. It 
induce a classifier from training examples. Support Vector Machines try to find a 
separating hyperplane that maximizes the margin, i.e. the distance between the 
decision boundary and the closest example. 

The optimization task of the Transductive Support Vector Machines is: [8] 

Minimize over ),,,...,( **
1 byy n w the value of wwT⋅2/1 , subject to: 

1][:
1][:

*
1

1
≥+∀
≥+∀

=

=
by

by
T

j
k
j

T
i

n
i

*
j

i
xw

xw

 



Where yi is the labeling of training examples (-1 or 1), 
*
jy
 is the labeling of test 

examples. Solving this problem means finding a labelling of test data and a model 
(w,b) that separates both training and test data with maximum margin [8]. 

6.3 Semi-supervised Learning 

The usual way of building a text classifier consists of two steps: training to get a 
model and applying that model on unlabeled examples. However, more 
sophisticated approaches exist. In [7] they survey some well-known approaches. A 
simple approach first trains a model on labeled examples, then label some 
unlabeled examples by that model, retrain with the new, larger set, and iterates 
until no more unlabeled example exists. They conclude that that less labelled data 
is required to obtain the performance comparable with the pure supervised 
approaches. 

7 Open Problems 

A text categorization system may have a lots of parameters. Often it is not clear, 
how to set them, it heavily depends on the nature of the problem. For example 
word stemming is a good idea, if we have few examples or too much distinct 
words with the same stem. Tuning the parameters to obtain the best results 
requires a disjoint set of examples, also known as validation set. However, this 
process is time-consuming. Is there a way to speed up this process? Can we say 
that – for example – the optimal choice of stemming and the normalization factor 
are independent? Can we create independent clusters of parameters? Or one 
parameter depends on the other but not vice versa? 

What is the maximum that can be mined from the training examples? How far are 
we from that maximum now? Does it make any sense to fine-tune the algorithms 
to the Reuters-21578 or any other corpora? Or the corpora are too different from 
each other, and any new problem needs re-desinging the half of a text 
categorization system? 

Using background knowledge: how can learning algorithms benefit from lexicons, 
vocabularies, ontologies, etc? 

Conclusions 

This paper gives some introduction into text categorization, and describes the 
common tasks of a TC system. Using Support Vector Machines as a machine 
learning algorithm is nowadays the most popular approach. Some aspects of 
SVMs are covered that reflect why they are suitable for TC. In the rest of the 



paper some interesting kind of TC systems are described briefly, and after all 
some open problems are posed. 

References 
[1] A. Aizawa: An information-theoretic perspective of tf-idf measures, 

Information Processing and Management: an International Journal archive, 
Vol. 39, Issue 1, 2003, pp. 45-65 

[2] Charles Elkan: Boosting and Naive Bayesian Learning, Technical Report 
No. CS97-557, September 1997, University of California, San Diego 

[3] Thorsten Joachims: Text categorization with support vector machines: 
learning with many relevant features, Proc. of ECML-98, 10th European 
Conference on Machine Learning, Springer Verlag, Heidelberg, DE, 1998, 
pp. 137-142 

[4] David D. Lewis: Reuters-21578 text categorization test collection, 1997 
http://www.daviddlewis.com/resources/testcollections/reuters21578/ 

[5] The 20 Newsgroups data set  
http://people.csail.mit.edu/jrennie/20Newsgroups/ 

[6] Lijuan Cai, Thomas Hofmann: Hierarchical Document Categorization with 
Support Vector Machines, ACM 13th Conference on Information and 
Knowledge Management, ACM Press, New York, NY, USA, 2004, pp. 78-
87 

[7] Bogdan Gabrys, Lina Petrakieva: Combining labelled and unlabelled data 
in the design of pattern classification systems, International Journal of 
Approximate Reasoning, 35, 2004, pp. 251-273 

[8] Thorsten Joachims: Transductive Inference for Text Classification using 
Support Vector Machines. Proceedings of the 16th International Conference 
on Machine Learning (ICML), San Francisco, CA, USA, 1999, pp. 200-
209 

[9] Christopher J. C. Burges: A tutorial on support vector machines for pattern 
recognition. Data Mining and Knowledge Discovery, 2(2), 1998, pp. 955-
974 

[10] Fabrizio Sebastiani: Machine learning in automated text categorization, 
ACM Computing Surveys (CSUR), Vol. 34 Issue 1, 2002, ACM Press, 
New York, NY, USA, pp. 1-47 

[11] Hinrich Schutze, David A. Hull, and Jan O. Pedersen: A comparison of 
classifiers and document representations for the routing problem. In 
Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors, Proceedings of 
the 18th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, 1995 July, pp. 229-237 

[12] Heaps’ law: http://en.wikipedia.org/wiki/Heaps'_law 
[13] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, Chris 

Watkins: Text Classification using String Kernels, The Journal of Machine 
Learning Research, Volume 2, March 2002, pp. 419-444 


