
On P Colonies, a Simple Bio-Chemically
Inspired Model of Computation

Jozef Kelemen1, 2, Alica Kelemenová1, 3
1 Institute of Computer Science, Silesian University

Opava, Czech Republic, and
2 VSM School of Management, City University

Bratislava, Slovak Republic
3 Department of Computer Science, Catholics University

Ružomberok, Slovak Republic
{kelemen, kelemenova}@fpf.slu.cz

Abstract: The contribution presents the first overview of so called P colonies, a bio-
chemically inspired formal model of a computing device, and the basic computational and
language-theoretic properties derived from that model.

Keywords: P colony, membrane system, computation, formal model

1 Introduction, Motivation, and an Intuitive Picture
of P Colonies

The main reason leading to a proposal of the formal framework of so-called P
colony (Kelemen et al., 2004) was to provide as simple as possible, purely
symbolic and computationally relevant, theoretically naturally tractable formal
model of phenomena appearing in real (bio-)chemical units like molecules and
cells. In the sense of their required simplicity P colonies remind the so-called
colonies of – in certain sense simplest – formal grammars defined in (Kelemen,
Kelemenova, 1992), and presented e.g. in (Csuhaj-Varju et al., 1994).

Different types of elementary entities are used in the model. We list them and give
a short motivation for their inclusion into the model.

The first type of elementary entities are the so-called objects, which correspond
e.g. to chemical compounds of (bio-)chemistry (like ions, atoms, molecules, and
macro-molecules). In P colonies, all these compounds are modeled by objects with
no internal structure. In this sense objects will be the simplest constituting
elements in our model. In our formalism, we use letters of the Latin alphabet to
denote objects.

Objects are supposed to be grouped into internally structured active entities
(molecules, cells, or, more generally speaking, agents…) or they can appear in
their completely passive environment in which these entities act. We assume that
the environment contains several copies of the basic environmental objects
denoted by e, as many as needed to perform a computation. Moreover the
environment can contain also finite multi-sets1 of non-basic objects, and each
entity contains a fixed (intuitively small) number of (possibly identical) objects.

The number of objects inside each active entity called an agent is same for each
agent and it determines the capacity of the P colony. In the simplest case we
suppose exactly two objects inside each agent at every moment of its activity.

The second type of elementary entities which are included into P colonies and
which are associated with agents are programs. Programs correspond to the
simplest (bio-chemical) reactions running on the objects and producing other
objects.

Each program consists of one rule for each object inside the agent. So the number
of rules in each program is determined by the capacity of the P system, too. The
program associated with the agent with c objects uses all its rules in parallel to all
actual objects, and each rule rewrites different object of the agent.

We distinguishes two types of rules, namely the evolution rules acting inside
agents, and the communication rules providing elementary interactions between
the agents and the environment.

The evolution rules are again as simple as possible. Each of them is able to rewrite
one object contained in the agent into another object which will remain inside this
agent. This process of rewriting an object, say a, into another object, say b, will be
denoted by a → b.

The communication rules are able to influence the environment by an agent and
vice versa, the agent by its environment. In as simple as possible way it consists in
the mutual exchanging of one object inside the agent, and one object in its
environment. Executing a communication rule, the object, say c, appearing in the
agent will move into the environment, and another object, say d, appearing in the
environment, will move into the agent. We will denote such a rule by c ↔ d,
where the object appearing in the agent is written in the left side of the relation ↔.

We extend the abilities of agents by following computationally non-trivial way:
assume that communication rule can be chosen from two possibilities with the first
one having higher priority. We get checking rules as a nontrivial extension of the
communication rules. From two communication rules associated with the agent
that one with the greater priority have to be active. The agent checks the
possibility to execute the communication rule having higher priority. Otherwise,

1 By a multi-set we mean a set in which multiple occurrences of elements are allowed

and treated.

the second communication rule can be treated. So, suppose two communication
rules in an agent: the rule c ↔ d, and the rule c’ ↔ d’ and a checking rule being a
pair c ↔ d ⁄c’ ↔ d’.

First, the agent checks the possibility to use rule c ↔ d, i.e. the appearance of c as
an internal object of the agent and d in the environment. In positive case c must be
replaced by d and vice versa. If this is not the case, the rule c ↔ d cannot be
realized, then the mutual exchange of the internal object c’ with the outer object d’
of the environment can be executed. A P colony with checking rules will be called
also a P colony with priority.

The agent of a P colony can have several programs and the number of rules in
each program is determined by the capacity of the P colony and corresponds to the
number of objects in each agent, which will remain constant during the whole
computation.

P colony starts a computation with the special basic objects only in the
environment and in each agent. The number of objects e in the agent is given by
the capacity of a P colony. The result of the computation is the number of
distinguished symbols in the environment at the end of the computation, when no
agent is able to realize any of its programs.

2 How P Colonies Compute – Simple Examples
We will demonstrate how a particular P colony looks like, and how it computes.
We present a P colony which executes the arithmetic addition of the number 1, the
operation “+1”.

Positive integer n will be represented in our P colony as n occurrences of a given
object, denoted in our case by f, inside of the environment of the P colony. Our
goal is to put the suitable agents into this environment, the activity of which will
increase the number of objects f in the environment to n+1. Moreover we will
assume that the requirement to solve our elementary problem +1 will be denoted
by the object l+ at the start of the computation in the environment and after the
ending computation P colony halts.

Suppose our specific environment contains several copies of the object e, exactly
n copies of the object f and one copy of the object l+ which represents the
additions. The P colony will contain exactly one agent (in the environment) with
two basic objects e and two programs:

< e → f ; e ↔ l+ > , < l+ → e ; f ↔ e >

each of them has one evolution rule and one communication rule. We will
represent such an agent in the following form:

AG+1 = ({ e, e}, < e → f; e ↔ l+ >, < l+ → e ; f ↔ e >).

So, our P colony is represented by the following items:

- the set of objects {e, f, l+}, the alphabet

- two distinguished objects, e and f from the alphabet; e is called the basic
object, and f is the final object, and

- one agent; in our specific case it consists of two basic objects e, e, and three
programs, each composed from two rules, evolution rule (of type a → b),
and communication rule (of type c ↔ d).

We demonstrate the behavior of the P colony starting, as assumed above with n
occurrences of the final object f and exactly one object l+ in the environment. The
computation will end and stop with one more occurrence of f in the environment,
which indicates the result of the operation +1.

Let the P colony start to work. Only the program < e → f; e ↔ l+ > can be used
for the pair of objects e of the agent AG+1. It changes one of its internal symbols e
to the internal symbol f, and executes the mutual exchange of the object e from the
agent and the object l+ from the environment. The objects l+ and f are now in
agent AG+1 and the environment contains n copies of the object f, several copies of
the object e (and no other object).

In the next step, the program < l+ → e; f ↔ e > is used by the agent AG+1 with
objects l+ and f. The result gives a pair of objects e inside the AG+1, and another f
in the environment. Non of the programs of the agent AG+1 can be applied because
of the absence of the object l+ . The computation halts, and the outer environment
contains the expected result.

We will continue with another example, a P colony which executes the arithmetic
subtraction of the number 1, the operation “-1”.

Positive integer n will be again represented in our P colony as n occurrences of the
object f, inside of the environment of the P colony. Our goal is to put the suitable
agent into this environment, the activity of which will

- decrease the number of objects f in the environment to n-1 for each positive
n and will produce the object lp and move it to the environment, or

- it gives object lz to the environment in the case there was not f in the
environment.

So the agent leaves the information, represented by object lp or lz, in the
environment whether there was any f in the environment or not. The requirement
to perform subtraction of “-1” will be denoted by the object l– in the environment
at the beginning of a computation.

Suppose our specific environment contains several copies of the object e, exactly
n copies of the object f and one copy of the object l– , which represents the

subtraction. Our P colony will contain exactly one agent (in the environment) with
two basic objects e and five programs:

< e → e; e ↔ l– > , < l– → lp ; e ↔ f / e ↔ e > ,

< f → e; lp ↔ e > , < lp → lz ; e ↔ e > , < e → e; lz ↔ e > ,

each of them containing one evolution rule and one communication or checking
rule. We will represent such an agent in the following form:

AG –1 = ({e, e}, < e → e; e ↔ l– > , < l– → lp ; e ↔ f / e ↔ e > , < f → e; lp ↔ e >,

< lp → lz ; e ↔ e > , < e → e; lz ↔ e >).

We demonstrate the behavior of the P colony starting, as assumed above with n
occurrences of the final object f and exactly one object l– in the environment. The
computation will end and stop with one less occurrences of f in the environment,
which indicates the result of the operation –1 and with the symbol lp if there was
any f in the environment, and with lz otherwise.

Let the P colony start to work. Only the program < e → e; e ↔ l– > can be used
for the pair e, e of objects of the agent AG–1. It executes the mutual exchange of
the object e from the agent and the object l– from the environment. The objects l–
and e are now in the agent AG–1 and the environment contains n copies of the
object f, several copies of the object e (and no other object).

In the next step, the checking program < l–→ lp ; e ↔ f / e ↔ e > is used by the
agent AG–1 with objects l– and e. The program results with objects lp and f or lp
and e, inside the agent AG–1, depending on the presence or absence of f in the
environment. In the first case we continue with the program < f→ e ; lp ↔ e > ,
which sends lp to the environment and computation stops. Otherwise, the program
< lp → lz; e ↔ e > produces object lz inside the agent AG–1, and in the next step it
is sent to the environment by the program < e→ e; lz ↔ e >. No programs of AG–1
can be now applied, so the computation halts and the outer environment gives the
expected result.

3 Formal Definition of P Colonies
A P colony of the capacity c is a construct Π=(A, e, f, B1, ..., Bn), where
 A is an alphabet of the colony (its elements are called objects),
 e ∈ A is the basic object of the colony,
 f ∈ A is the final object of the colony,
 Bi for 1≤ i≤ n are agents, with the structure Bi = (Oi, Pi), where Oi is a

multiset of c copies of the basic object e (the initial state of the
agent), and Pi = {pi,1, ..., pi,ki

} is a finite set of programs; each

program pi,j consists of c rules; evolution rules of the form a→ b,
communication rules of the form c ↔ d, or checking rules of the
form c↔d / c'↔d'.

In this paper we will consider colonies with capacity two or three, i.e. having two
or three objects inside each agent, respectively and two or three rules in each
program of agents, corresponding to the number of objects in agents.

In the above given definition of P colony no restrictions are formulated to the
structure of programs. In the original paper [8] P colonies with capacity two and
with special simple programs were considered. Namely the programs of one of the
form

< a→ b; c ↔ d > or < a→ b; c↔ d / c'↔ d' >.

We will refer to such colonies as restricted P colonies, as it was proposed in [3].
Each program of a restricted P colony realizes an evolution of one of the two
objects of the agent and mutual exchange of another object and an object from the
environment, indicated by the communication rule or by the checking rule.

At the beginning of the computation performed by a given P colony, the
environment contains arbitrarily many copies of basic object e (and nothing else);
moreover, as stated above, each agent contains c copies of e. Both sequential and
parallel behavior of agents in of P colonies will be considered in present paper.
Parallel behavior was treated in the original model in [8] in accordance with the
membrane structure motivation. (Sequential P colonies were introduced later, in
[5].)

At each step of the parallel computation, the content of the environment and the
contents of agents change in the following manner: each agent, which can use any
of its programs have to use one (chosen non-deterministically). When using the
program, all rules are applied, each one to different object from the agent.

In the sequential computation one agent takes a part on the rewriting at each step.
In this case the content of the chosen agent and the content of the environment can
be changed in one step of computation.

Formally, a state (a configuration) of the P colony will be expressed as an (n+1)-
tuple of the objects appearing inside each agent and in the environment, written in
the form (w1, ... ,wn , wE eω), where |wi| = c, 1≤ i ≤ n, represents c objects placed
inside the i-th agent, and wE ∈ (A-{e})* represents the objects in the environment
different from the basic object e; the symbol eω is included to denote the fact that
the environment always contains arbitrarily many copies of e. An initial state of
the computation is of the form (ec, ..., ec, eω).

Computation will be a sequence of states (configurations) of the P colony, the first
of which is the initial state, and each further state is a result of one step of the
computation from its predecessor. The computation ends by halting, i.e. when it a
state, in which no agent can use any of its programs. With a halting computation

we associate the result, in the form of the number of copies of the special object f
present in the environment.

Because of the non-determinism in choosing programs, we obtain several com-
putations, hence we associate with a P colony Π a set of numbers, N(Π),
computed by all possible halting computations of Π.

Given a P colony Π = (A, e, f, B1, ..., Bn) the number of agents n is called the
degree of Π., and the height of Π is the maximal number of programs in agents of
the P colony. The third parameter characterizing a P colony is already mentioned
capacity of Π, describing the number of objects in agents identical with the
number of rules in programs.

The family of all sets of numbers N(Π), computed (in parallel or in sequential) by
P colonies of capacity c, degree at most n and of height at most h, without using
checking rules in their programs is denoted by NPCOLpar(c,n,h) (or by
NPCOLseq(c,n,h)). If any of the parameters n and h is not bounded in considered P
colonies, we replace it with *. The case of restricted colonies will be indicated
with R, i.e. write NPCOLmR instead of NPCOLm for m being seq or par. If
checking rules are allowed, then we write NPCOLK instead of NPCOL; thus,
NPCOLparKR(2,n,h) will be the family of numbers computed by restricted P
colonies (of the capacity 2) using checking rules, with at most n agents and with at
most h programs in each agent.

In what follows we discuss the computation power of P colonies of given degree,
height and capacity, comparing it with the standard etalon of the computation
power of Turing machines. More formally, the families NPCOLmα(c,n,h), for α ∈
{ε, K, R, KR}, and m∈ {par, seq}, are of the interest for various values of the
parameters, especially values of parameters c, n, h, which guarantee the universal
computational power of P colonies.

Proofs of all universality theorems throughout the paper are based on a simulation
of the behavior of a register machine, which are known to be computationally
complete, by a P colony. The reader can find some necessary comments on
register machines in the Appendix.

4 P Colonies with One Agent
We start with investigation of P colonies with one agent. In this case sequential
and parallel behavior of P colonies coincide. So we will use NPCOL(c,1,h) instead
of NPCOLseq(c,1,h) or NPCOLpar(c,1,h). Even restricted P colonies with one agent
and with checking rules are computationally complete.

Theorem 4.1 [3,5]: NPCOL KR(2,1,*) = NRE.

Proof: Consider a set of numbers computed by a register machine M=(m, H, l0, lh,
P). In a P colony a content of the register i will be represented by the number of
copies of a specific object ai in the environment. Moreover, labels l from H
together with their two copies denoted l', l'' will be objects for our colony.

We construct the P colony Π = (A, f, e, B), with the alphabet A= {ai| 1≤ i≤ m} ∪
{e,d,d'}∪ H ∪ H´ ∪ H´ and f = a1.

We consider an agent B. It starts to comput with producing primed labels l', l''
according the following programs:

< e→ α; e ↔ e >, < e→ α;β ↔ e >, < e→ l0 ;α ↔ e >

for α,β ∈ {l', l'' | l∈ H }. It produces objects α,β and throw them in the
environment.

The process stops after also producing the initial label l0 and B starts to simulate
the register machine. The object e and l0 are now inside the agent.

For each instruction l1: (ADD(r), l2, l3) from P we introduce in B the programs Pl1 :

< l1→ l'1; e↔ e > , <e→ ar; l'1↔ l'1> , < l'1→ l2 ; ar ↔ e > , < l'1→ l3; ar↔ e >

The first program produces pair of objects l'1 and e, then by the second program
the agent gets objects l'1 and ar inside and either the program < l'1→ l2 ; ar ↔ e >
or < l'1→ l3; ar↔ e > producing the pair e and l1 or e and l2.

For each instruction l1: (SUB(r), l2, l3) from P we introduce in B the programs Pl1
:

< l1→ l'1 ; e↔ ar /e↔ e >, < ar→ e; l'1↔ l''1 >, < l''1→ l2; e↔ e >, < l'1→ l3;
e↔e >.

The first checking program produces either the objects l'1, ar, or l'1, e in the
dependence on the presence of ar in the environment. For the objects l'1, ar the
agent can use the second and third program to produce objects l2 and e. For the
objects l'1, e the agent uses the last program to obtain l3 and e. In order to ensure
that agent B has produced sufficient primed versions of labels so that the programs
of B can exchange primed objects from inside with primed objects from the
environment, the program < l'1→ l'1; e ↔ e> is also included. If in any moment,
an exchange l'1 ↔ l'1 or l'1↔ l''1 cannot be realized, then the program < l'1→ l'1; e
↔ e > can work forever, hence preventing the halting of the computation. Thus,
we have N(M)=N(Π). □

The restriction to the P colonies with only one agent and no checking rule
decreases the generative power P colonies. These colonies generate the set of
numbers NMAT characterized also by matrix grammars.

Theorem 4.2 [5]: NPCOL(2,1,*) = NMAT

We omit here the proof, which uses also the partially blind register machine.

5 Universality in Parallel P Colonies
As we demonstrated in Section 4 one agent is sufficient to grant the universal
generative power of P colonies. However the number of programs in that agent is
not limited in that case. Now we will deal with limitations of the number of
programs in agents. Universal generative power can be achieved also in this case
with low capacity and height of P colonies (the parameters of c, h) but with more
agents in P colonies. We summarize results obtained in this direction. First
consider the parallel P colonies.

5.1 Restricted P Colonies
We start with the case of restricted P colonies, which have programs either of the
form < a→ b; c↔ d > or < a→ b; c ↔ d / c'↔ d' >. Each of such programs
realizes an evolution of one of the two objects of an agent, and a mutual exchange
of the another object of the agent and an object from the environment (eventually
with checking possibility).

Theorem 5.1 [3,8]: NPCOLparKR(2,*,5) = NRE.

Proof: Let us consider a register machine M=(m,H,l0 ,lh ,P). All the labels from H
will be objects for our colony; moreover, the contents of a register i will be
represented by the number of copies in the environment of a specific object ai. We
construct a P colony Π = (A, f, e, B1, ..., Bs), with the alphabet A=H ∪ {ai| 1≤ i≤
m} ∪ {e,d,d'}, with f = a1, and the following s = card(P)+2 agents.

We consider initial agents B1, B2:

P1= { < e → d; e ↔ e > , < e → l0 ; d ↔ e > , < e→ e; l0 ↔ d'> }

P2= { < e → d'; e↔ e > , < e→ e ; d' ↔ e > , < e→ e; e ↔ d > }.

The first agent sends to the environment one copy of d and one of l0, the initial
label of M; l0 is sent out in exchange of d' and the work of B1 stops. The second
agent can produce several copies of d', but it can stop by bringing inside the copy
of d produced by the first agent. The possible additional copies of d' will be
useless, important is that we have only one copy of l0, and its appearance in the
environment triggers the beginning of the simulation of a computation in M.

For each instruction l1: (ADD(r), l2, l3) from P we consider an agent (the label l1
precisely identifies the instruction) with programs

Pl1
= { < e → ar; e ↔ l1 > , < l1→ l2; ar ↔ e > , < e → e; l2 ↔ e > ,

 < l1→ l3; ar ↔ e > , < e → e; l3 ↔ e > } .

If the object l1 is present in the environment, then this agent can bring it inside, at
the same time changing its inner e with ar; in the next step, this ar is released into
the environment, while inside one transforms l1 into l2 or l3; this label is then sent

to the environment, thus completing the simulation of the ADD instruction and
making possible the simulation of another instruction.

For each instruction l1: (SUB(r), l2, l3) from P we consider an agent with programs

Pl1 = { < e → e; e ↔ l1 > , < l1 → l2 ; e ↔ ar / e ↔ e > , < ar → e; l2 ↔ e > ,

 < l2 → l3 ; e ↔ e > , < e → e; l3 ↔ e > } .

The agent brings l1 inside, then, in the second step of the simulation, it checks
whether at least one copy of ar is present in the environment; in the positive case,
it brings one copy inside it (and it changes ar here into e); in the negative case it
does not change the inner object e. In the former case, the agent can then move l2
into the environment, in the latter case it first transforms object l2 into l3 and this
label is sent to the environment. The number of copies of ar from the environment
is decreased by one, if possible, and the next available label indicates the correct
action.

From the previous explanations, it is easy to see that the computations in M are
correctly simulated in Π, and that the computation in Π stops in the moment when
the label lh is sent to the environment (and at that time the number of copies of a1
present in the environment is equal to the contents of the first register of M).

Consequently, N(M)=N(Π), and, because each agent contains at most five
programs, the proof is complete. □

Note that each of the instructions ADD and SUB in the construction presented in
the last proof are realized by exactly one individual agent.

The optimality of the previous result in the height of agents is not known, and also
the power of P colonies with height 1, 2, 3 or 4 is an open question.

5.2 Elimination of Checking Rules
The checking rules directly remind the check for zero from the SUB instructions
of register machines, that is why it is highly surprising to get universality even
avoiding using this powerful feature (at the expense of using slightly more
programs in each agent). It was proved in [3] that NPCOLpar(2,*,8) = NRE and
NPCOLpar(3,*,7) = NRE. These results were improved in [5], where it was proved
that five programs in each agent are sufficient for restricted P colonies.

Theorem 5.2 [5]: NPCOLparR(2,*,5) = NRE

Proof: We consider a register machine M=(m,H,l0 ,lh ,P) and represent the content
of register i by the number of copies of a specific object ai in the environment. We
construct a P colony Π = (A, f, e, B1, ..., Bs) with alphabet A ={l0 ,e,d,d'}∪ {ai| 1≤
i≤ m} ∪ { l, 1l , 2l , 3l , 4l , 5l , 6l , 7l, 8l | l∈ H}. Each simulation of the instruction l starts
with objects l and 1l in the environment.

To initialize the whole system, i.e. to produce l0 and 1l0 we take two agents with
following programs

P0,1 = { < e → 3l0 ; e ↔ e > , < e→ 4l0 ;
3 l0 ↔ e > ,

 < 4l0 →
 l0 ; e ↔ e > , < e → 5l0 ; l0 ↔ e > }

P0,2 = { < e → 1l0 ; e ↔ 3l0 > , < 3l0→ 5l0 ;
1l0 ↔ e> }.

Both agents end with e and 5l0 inside and leaves l0 and 1l0 in the environment.

For each instruction l1: (ADD(r), l2, l3) from P we consider four agents (the label l1
identifies the instruction)

Pl1,1 = { < e → 7l1 ; e ↔ l1 > , < l1→ ar;
7l1 ↔ e > ,

 < e → l2 ; ar ↔ e> , < e → e; l2 ↔ e > } .

Pl1,2 = { < e → e; e ↔ 1l1 > , < 1l1→ e; e ↔ e > ,

 < e → 1l2; e ↔ 7 l1 > , < 7l1 → e; 1l2 ↔ e > } .

Pl1,3 = { < e → 4l1 ; e ↔ l1 > , < l1→ ar;
4l1 ↔ e > ,

 < e → l3 ; ar ↔ e > , < e → e; l3 ↔ e > } .

Pl1,4 = { < e → e; e ↔ 1l1 > , < 1l1→ e; e ↔ e > ,

 < e → 1l3; e ↔ 4l1 > , < 4l1 → e; 1l3 ↔ e > } .

Agents Bl1,1 and Bl1,2
 work together: Bl1,1

 takes l1 from the environment, produces ar

and send out 7l1 while at the same two steps Bl1,2 simply consumes 1l1 ending up with
the multi-set e,e. In the subsequent steps Bl1,1 sends out ar and l2, whereas Bl1,2

produces and sends out 1l2 allowing the next instruction l2 to be simulated.

The role of the agents Bl1,3 and Bl1,4 is similar but now 1l3 and l3 are generated and
sent to the environment.

For each instruction l1: (SUB(r), l2, l3) from P we will consider six agents Bl1,1 ,...,
Bl1,6 with following programs:

Pl1,1 = { < e → e; e ↔ l1 > , < l1→ 6l1; e ↔ ar > , < ar → e; 6l1 ↔ e >,

 < l1 → 3l1; e ↔ 2l1 > , < 2l1 → e; 3l1 ↔ e > }

Pl1,2 = { < e → 2l1; e ↔ 1l1 > , < 1l1 → e; 2l1 ↔ e > }

In the first step Bl1,1
 and Bl1,2

 takes in the labels l1 and 1l1. In the second step Bl1,2

sends out 2l1 whereas Bl1,1 in the case here is an object ar in the environment, takes
in ar and then sends out 6l1. In the case there is no object ar in the environment Bl1,1

consumes 2l1 after one waiting step and finally sends out 3l1.

With 6l1 in the environment Bl1,3 and Bl1,4
 become active and produce labels l2 and

1l2

Pl1,3
 = {< e → 7l1 ; e ↔ 6l1 > , < l1→

8
l1 ;

7l1 ↔ e > ,

 < 8l1 → l2; e ↔ 2l1 > , < 2l1 → e; l2 ↔ e > }

Pl1,4
 = {< e → 1l2; e ↔ 7 l1 > , < 1l1 → e; 1l2 ↔ e > }.

On the other hand, if 3l1 is in the environment then only Bl1,5 and Bl1,6
 can work

finally sending l3 and 1l3 to the environment

Pl1,5 = { < e → 4l1; e ↔ 3l1 > , < l1→ 5l1;
4l1 ↔ e > ,

 < 5l1→ l3; e ↔ e > , < e → e; l3 ↔ e > }

Pl1,6 = { < e → 2l3; e ↔ 4l1 > , < 4l1 → e; 1l3 ↔ e > }.

The computation stops when the label lh appears in the environment. Each agent
has at most five programs with no checking rule which prove the theorem. □

5.3 Non-Restricted P Colonies
In the present sections the structure of rules allowed in programs is not fixed. This
allows us to decrease the number of rules used in programs.

Theorem 5.3 [3]: NPCOLparK(2,*,4) = NRE.

Proof: Analogically as in the proof of Theorem 5.1 P colony will contain initial
agents B1,B2 with programs

P1= { < e → d; e ↔ e > , < e → l0 ; d ↔ e > , < e→ e; l0 ↔ d'> }

P2= { < e → d'; e↔ e > , < e→ e; d' ↔ e > , < e → e; e ↔ d > }.

and the agents Bl1
with programs:

For each instruction l1: (ADD(r), l2, l3) from P we take

Pl1
= { < e→ e; e ↔ l1 > , < l1→ ar; e→ l2 > , < l1→ ar; e→ l3 > ,

 < ar ↔ e; l2 ↔ e / l3 ↔ e > } .

In the first step, the agent brings l1 inside; in the next step l1 is transformed in ar
and the other internal object e is non-deterministically changed into l2 or l3 ; ar is
sent out in the third step, together with the object l2, l3 present in the agent.

For each instruction l1: (SUB(r), l2, l3) from P we consider a program

Pl1
= { < e ↔ l1; e ↔ a r /e→ l3 > , < l1→ l2 ; a r → e >, < e→ e; l2 ↔ e > ,

 < l1→ e; l3 ↔ e > }.

In the first step, the agent brings l1 inside, and at the same time it checks whether
ar is present in the environment; in the positive case it brings one copy inside the
agent, in the negative case it changes the other object e in l3. In the former case, it
changes l1 in l2 and ar to e, then it sends l2 out; in the latter case it sends out l3 and
at the same time transforms l1 in e. The simulation of the SUB instruction is
correct.

The equality N(M)=N(Π) is again easy provable. □

Allowing one more object in each agent with one more rule in each program we
can decrease the number of programs in each agent.

Theorem 5.4 [3]: NPCOLpar K(3,*,3) = NRE.

Proof: Initial agents B1,B2 have following programs (note that they contain one
more e ↔ e rule in each program, otherwise they are similar as in the proof of the
previous theorem)

P1= {< e→ d; e↔ e; e↔ e >, < e → l0 ; d↔ e; e↔ e >, < e→ e; l0 ↔ d' ;e↔ e >}

P2= {< e → d'; e↔ e; e↔ e >, < e→ e; d' ↔ e; e↔ e >, < e→ e; e ↔ d; e↔ e>}.

The agents Bl1
 contain the following programs:

For each instruction l1: (ADD(r), l2, l3) from P we take

Pl1
= { < e → ar; e → l2; e ↔ l1 > , < e → ar; e → l3; e ↔ l1 > ,

 < l1→ e; ar ↔ e; l2 ↔ e / l3↔ e > } .

In the first step, the agent brings l1 inside and non-deterministically changes the
other internal object e into l2 or l3 ; in the next step, l1 is transformed in e and ar is
sent out, together with the label l2 or l3 present in the agent.

For each instruction l1: (SUB(r), l2, l3) from P we consider

Pl1
= { < e ↔ l1; e ↔ ar /e→ l3; e→ l2 >, < l1→ e; ar→ e; l2 ↔ e >,

 < l1→ e; l2→ e; l3 ↔ e > } .

In the first step, the agent brings l1 inside, and at the same time checks whether ar
is present in the environment; in the positive case it brings one copy of it inside, in
the negative case it changes the other object e in l3; at the same time, the third
copy of e is changed in l2. In the next step, the agent changes l1 in e; if ar is
present, then the agent applies the program which sends out the label l2; otherwise,
it changes l2 to e and sends out l3.

The equality N(M)=N(Π) easily follows.□

6 Universality in Sequential P Colonies
Analogically to the parallel case, in sequential case programs with five rules are
sufficient to generate all computable sets of numbers. But now, we cannot
eliminate the checking rules.

Theorem 6.1 [5]: NPCOLseqKR(2,*,5) = NRE

Proof: We consider a register machine M=(m,H,l0 ,lh ,P). We construct a P colony
Π = (A,a1,e,B1,....,Bs) with alphabet A = {l0́ , e, d, d'} ∪ {ai | 1≤ i≤ m} ∪ { l| l∈ H }.

Starting agents B1, B2 have the programs

P1 = { < e→ d; e ↔ e > , < e→ l0 ; d↔ d´ > , < d´→ l0´ ; l0 ↔ e > }

P2 = { < e→ d´; e ↔ e > , < e→ l0´ ; d´↔ e > }

Both these agents stop with objects l0´; d´ and leaving l0 in the environment.

All further programs are same as in the proof of Theorem 5.1 so we list them with
no additional comment.

ADD instruction l1: (ADD(r), l2, l3) is realized by one agent with rules

Pl1
= { < e→ ar; e ↔ l1 > , < l1→ l2 ; ar ↔ e > , < e → e; l2 ↔ e > ,

 < l1→ l3; ar ↔ e > , < e → e ; l3 ↔ e > } .

SUB instruction l1: (SUB(r), l2, l3)

Pl1 = { < e → e; e ↔ l1 > , < l1 → l2 ; e ↔ ar / e ↔ e > , < ar → e; l2 ↔ e > ,

 < l2 → l3 ; e ↔ e > ,< e → e; l3 ↔ e > } .

STOP instruction lh

Blh = { < e → e; e ↔ lh > , < lh → e ; e ↔ e > }.□

Note that in the proofs of Theorems 5.3 and 5.4 the simulation of each ADD and
SUB instruction is done by a single agent. So, starting with appropriate initial
agents one can easily prove the following:

Theorem 6.2: NPCOLseqK(2,*,4) = NRE.

Theorem 6.3: NPCOLseqK(3,*,3) = NRE.

7 Note on the Initial State
We have introduced a computation in P colonies to start with the homogeneous
state in the sense that it contains basic objects e only, inside all agents as well as in
the environment. So (ec,..., ec, eω) is the starting state of the P colony (with

capacity c). We can consider also more general case when a starting state of a P
colony is of the form (w1,0 , ... , wn.0 ,wE,0 eω), i.e. the case when computation starts
with an arbitrary c-tuple of objects in agents and with finite number of non-basic
objects in the environment. It follows from the universality of P colonies
presented in the previous section that the generalization to the non uniform
starting state has no influence to the generative power of the considered P
colonies, both in sequential and parallel way of derivation. As the corollary of
results we have.

Theorem 7.1: Let N(Π) be the set of numbers computed by a P colony Π starting
with the configuration (w1,0 ,...,wn.0 ,wE,0 eω). Then there is a P colony Π´ starting
with the configuration (ec, ..., ec, eω) such that N(Π) = N(Π´).

Conclusions

The colonies we have considered here are composed of so weak cells, agents that
the computational universality of the model is surprising, with the „explanation“
staying in the possibility to simulate a register machine in the environment, either
using the „global information“, which can be achieved by the checking programs,
or based on the cooperation of cells.

As we have seen, the investigation of P colonies concerns different models with
uniform generative power. There are many topics which we have not discussed up
to now for P colonies. Some of them are mathematical problems, for instance,
concerning the optimality of the results obtained here, whether or not the
parameters n and h induce, as expected, a double hierarchy of the families
PCOL(k,n,h), NPCOLR(2,n,k),and so on, but other problems, although technical
too, have a more general significance. For instance:
- Which further simplifications can be considered without losing the

universality?
- What about cells containing only one object at a time, or with programs

consisting of only one rule?
- What about having a bounded environment?
- On the other hand, what happens if the environment is populated at the

beginning with different objects?
- Can this simplify the programs?
- What happens if the objects can act on the environment not only by

exchanging objects, but also directly, by mutations of external objects; more
generally, what about having environment evolution rules (thus coming
closer to eco-grammar systems [4])?

We conclude with the belief that P colonies deserve further research efforts.
Recently, two generalizations of P colonies were introduced. EP colony
introduced in [1] follows the idea of eco-system in research direction of P systems.

The paper starts an investigation on the direction formulated in the last question.
Motivation for an introduction and investigation of LP colony in [6] can be found
in natural language evolution.

Acknowledgment

The authors’ research on the topic is supported by the Czech Science Foundation
Grant No. 201/04/0528.

References

[1] E. Csuhaj-Varju: EP-colonies: Micro-Organisms in a Cell-like
Environment, Proceedings of the Third Brainstorming Week on Membrane
Computing, Sevilla (Spain), January 31-February 4, 2005, pp. 123-130

[2] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun: Grammar Systems - A
Gram-matical Approach to Distribution and Cooperation. Gordon and
Breach, London, 1994

[3] E. Csuhaj-Varju, J. Kelemen, A. Kelemenova, Gh. Paun, G. Vaszil: Cells
in environment: P Colonies, Journal of Multi-Valuated Logic, 2005
(accepted) 13 pp.

[4] E. Csuhaj-Varju, A. Kelemenova, J. Kelemen, Gh. Paun: Eco-grammar
systems, A grammatical framework for life-like interactions, Artificial Life
3 (1997) 1-28

[5] R. Freund, M. Oswald: P colonies working in the maximally parallel and
in the sequential mode. In: Pre-Proceedings of the 1st International
Workshop on Theory and Application of P Systems (G. Ciobanu, Gh. Paun,
eds.), Timisoara, Romania, September 26-27, 2005, pp. 49-56

[6] G. Bel-Enguix, M. D. Jimenez Lopez: LP Colonies for Language
Evolution. A preview. In: Pre-Proceedings of the 6th International
Workshop on Membrane Computing (WMC6) (R. Freund, G. Lojka, M.
Oswald, Gh. Paun, eds.). Vienna, June 18-21, 2005, pp. 179-192

[7] J. Kelemen, A. Kelemenová: A grammar-theoretic treatment of multiagent
sys-tems. Cybernetics and Systems 23 (1992) 621-633

[8] J. Kelemen, A. Kelemenová, G. Paun: The power of cooperation in a
bioche-mically inspired computing model: P colonies. In: Workshop and
Tutorial Proceedings, Ninth International Conference on the Simulation
and Synthesis of Living Systems, ALIFE IX (M. Bedau at al., eds.) Boston,
Mass., 2004, pp. 82-86

[9] M. L. Minsky: Computation – Finite and Infinite Machines. Prentice Hall,
Engle-wood Cliffs, NJ, 1967

[10] Gh. Paun: Computing with membranes. Journal of Computer and System
Sciences 61 (2000) 108-143

[11] Gh. Paun: Computing with Membranes - An Introduction. Springer-Verlag,
Berlin, 2002

[12] E. M. A. Ronald, M. Sipper, M. S. Capcarrére: Design, observation,
surprise! A test of emergence. Artificial Life 5 (1999) 225-239

Appendix: The Register Machines

A register machine defined in [9] (and called also Minsky-machine in some
publications) is a device consisting of a given number of registers, each of which
can hold an arbitrarily large non-negative integer number, and a program, which is
a sequence of labelled instructions, which specify how the numbers stored in
registers can change and which instruction can be used in next step. There are
three types of instructions considered:

l1: (ADD(r), l2, l3) (add 1 to register r and go to the instruction with label l2 or l3),

l1: (SUB(r), l2, l3) (if register r is non-empty, then subtract 1 from it and go to the
instruction with label l2, otherwise go to the instruction with label l3),

lh: HALT (the halt instruction).

Thus, formally, a register machine is a construct

M = (m, H, l0 , lh ,P),

where m is the number of registers,

H is the set of instruction labels,

l0 is the start label,

lh is the halt label (assigned to instruction HALT), and

P is the set of instructions (the program); each label from H labels only one
instruction from P, thus precisely identifying it.

A register machine M computes a set N(M) of numbers in the following way: we
start with all registers empty (hence storing the number zero) with the instruction
with label l0 and we proceed to apply instructions as indicated by the labels (and
made possible by the contents of registers); if we reach the halt instruction, then
the number stored at that time in register 1 is said to be computed by M and hence
it is introduced in N(M). It is known that in this way we can compute all sets of
numbers which are Turing computable (see, e.g. [8]).

