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Abstract:
In this paper problem of modeling and control of 4-wheel skid-steeringmobile robot is pre-
sented. To obtain practical stabilization for both admissible and non-admissible trajectories
[13, 7, 8], i.e. trajectories which do not satisfy nonholonomic constraint,control scheme
which is based on kinematic algorithm [4, 5] is proposed. Theoretical considerations are
verified by numerical simulation and experiments. In addition some details concerning im-
plementation of proposed algorithm is given.

1 Introduction

Skid-steering mobile robots (SSMRs)

Figure 1: Experimental skid-
steering mobile robot

are quite different from classical wheeled mo-
bile robots for which lack of slippage is usu-
ally supposed – see for example [3]. In addi-
tion interaction between ground and wheels
makes their mathematical model to be uncer-
tain and caused control problem to be dif-
ficult as it generally demands quite detailed
consideration of dynamic properties.

In this paper we propose to use a continuous
and time-differentiable control law which is
based on kinematic oscillator [5] to resolve
both regulation and trajectory tracking prob-
lem. Here we refer to work done by Caracci-
olo et al. [2] and our previous research which
can be found in [10, 13]. To illustrate performance of the controller numerical simu-
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lations are presented. Next, experimental verification using small four-wheel SSMR
(see Fig. 1) is described and some results of experiments aregiven.

2 Model of the robot

2.1 Introduction

In this section kinematic and dynamic model of four-wheel skid-steering mobile
robot is presented. We refer to the real experimental construction consists of two-
wheel differentially driven mobile robots namely MiniTracker 3 (see Fig.1) [9].

In order to simplify the mathematical model of SSMR we assumethat [2]

• plane motion is considered only,

• achievable linear and angular velocities of the robot are relatively small,

• wheel contacts with surface at geometrical point (tire deformation is neglected),

• vertical forces acting on wheels are statically dependent on weight of the ve-
hicle,

• viscous friction phenomenon is assumed to be negligible.

2.2 Kinematics

Firstly, consider a vehicle moving on two dimensional planewith inertial coordi-
nate frame(Xg, Yg) as depicted in Fig. 1(a). To describe motion of the robot it is
convenient to define an local frame attached to it with originin its center of mass

(COM). Assume thatq ,
[

X Y θ
]T

∈ R
3 denotes generalized coordinates,

whereX, Y determine COM position andθ is an orientation the local frame with
respect to the inertial frame, respectively.

Let v ,
[

vx vy

]T
∈ R

2 be a velocity vector of COM expressed in the local
frame withvx andvy determining longitudinal and lateral velocity of the vehicle
[4].

From Fig. 1(a) it is easy to derive kinematic equation of motion using rotation matrix
as follows

q̇ =





Ẋ

Ẏ

θ̇



 =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1









vx

vy

ω



 , (1)

whereq̇ ∈ R
3 is the generalized velocity vector andω denotes angular velocity of

the vehicle.



(a) Free-body kinematics (b) Wheel velocities
relationships

Figure 2: Kinematics of SSMR

To complete kinematic model of SSMR additional velocity constraints should be
considered with respect to the inertial frame. According togeometrical situation
presented in Fig. 1(b) one can prove that coordinates of velocities of pointsP1,
P2,...,P4 where the wheels of the robot touch the plane must satisfy [13, 12]

vL , v1x = v2x, vR , v3x = v4x,

vF , v2y = v3y, vB , v1y = v4y,
(2)

wherevL, vR denote longitudinal coordinates of left and right wheel velocities,vF

andvB , are lateral coordinates of velocities of front and rear wheels, respectively.

Remark 1 From Fig. 1(b) it is clear [13, 12] thatviy is equal to zero for straight
motion only (i.e. ifω = 0), otherwiseviy 6= 0 that implies lateral skid that is
necessary to change orientation of such vehicle.

Notice thatωL andωR which denote angular velocities of left and right wheels,
respectively, can be regarded as control inputs at kinematic level and can be used to
control longitudinal and angular velocity according to thefollowing relationships

vx = r
ωL + ωR

2
, ω = r

−ωL + ωR

2c
, (3)

while r is so called effective radius of wheels [11] and2c is a spacing wheel track
depicted in Fig. 1(a).

Remark 2 It is very important to note that equations (3) are valid onlyif longitu-
dinal slip does not appear, otherwise they should be treatedas just approximations
and to improve accuracy parametersc andr should be identified experimentally.

Next, lateral velocityvy which determines velocity of lateral slip of the vehicle can
be obtained as follows [13]

vy + xICRω = 0, (4)



wherexICR is a coordinate of instantaneous center of rotation (ICR) ofthe robot
expressed alongxl axis. It can be proved that this equation in not integrable, hence
it describes nonholonomic constraint and can be written in Pfaffian form as

[

− sin θ cos θ xICR

] [

Ẋ Ẏ θ̇
]T

= A (q) q̇ = 0, (5)

where equation (1) has been used. Since the generalized velocity q̇ is always in the
null space ofA one can write that

q̇ = S (q) η, (6)

whereη ∈ R
2 is a control input at kinematic level defined as

η ,
[

vx ω
]T

, (7)

S ∈ R
3×2 is the following matrix

S (q) =





cos θ xICR sin θ
sin θ −xICR cos θ

0 1



 (8)

which satisfies
ST (q) AT (q) = 0. (9)

Remark 3 Equation (6) describes kinematics of SSMR which will be usedto formu-
late control law. Sincedim (η) < dim (q) SSMR can be regarded as an underac-
tuated system. Furthermore, because of constraint (5) thissystem is nonholonomic.

2.3 Dynamics

Figure 3: Forces and torques

Because of interaction between wheels and
ground dynamic properties of SSMR play a
very important role. It should be noted that
if the robot is changing its orientation reac-
tive friction forces are usually much higher
than forces resulting from inertia. As a con-
sequence, even for relatively low velocities,
dynamic properties of SSMR influence mo-
tion much more than for other vehicles for
which non-slipping and pure rolling assump-
tion may be satisfied.

However in this section only simplified dy-
namics of SSMR [2], which will be useful for
control purpose, are introduced. In order to
simplify this model we assume that the mass
distribution of the vehicle is almost homogeneous, kineticenergy of the wheels and



drives can be neglected and detailed description of tyre which can be found, for
example, in [11] are omitted.

A dynamic equation of SSMR can be obtained using Euler-Lagrange principle with
Lagrange multipliers to include nonholonomic constraint and it can be written as

M (q) q̈ + R (q̇) = B (q) τ + AT (q) λ, (10)

whereM ∈ R
3×3 denotes the constant, diagonal, positive definite inertia matrix

M =





m 0 0
0 m 0
0 0 I



 , (11)

m, I represent the mass and inertia, respectively,R (q̇) ∈ R
3 denotes vector of

resultant reactive forcesFl, Fs and torqueMr

R (q̇) =





Fs (q̇) cos θ − Fl (q̇) sin θ
Fs (q̇) sin θ + Fl (q̇) cos θ

Mr (q̇)



 , (12)

B ∈ R
3×2 denotes input matrix and is explicitly defined as follows

B (q) =
1

r





cos θ cos θ
sin θ sin θ
−c c



 . (13)

The termτ =
[

τL τR

]T
∈ R

2 which appears in (10) can be treated as a control
signal at dynamic level and represents torques generated byactuators on the left and
right side of the robot. Notice that these torques produce active forcesFi (see Fig. 3)
that are theoretically independent on longitudinal slip.

The reactive forces and torque in (12) are calculated as

Fs (q̇) =
4

∑

i=1

Fsi (q̇) , Fl (q̇) =
4

∑

i=1

Fli (q̇) (14)

and

Mr (q̇) = b [Fl2 (q̇) + Fl3 (q̇)] − a [Fl1 (q̇) + Fl4 (q̇)]

+c [−Fs1 (q̇) − Fs2 (q̇) + Fs3 (q̇) + Fs4 (q̇)] (15)

where
Fsi (q̇) , µsiNi sgn (vix) , Fli (q̇) , µliNi sgn (viy) (16)

whileµsi andµli are dry friction coefficients forith wheel in longitudinal and lateral
direction, respectively,Ni is a reactive vertical force which acts on wheel and is
supposed to be statically dependent on weight of the vehicle(see [2]).



For control purpose it would be convenient to express dynamic equation inη andη̇

terms. According to it one can obtain that

M̄η̇ + C̄η + R̄ = B̄τ , (17)

where relationships (6) and (9) have been used,

M̄ = ST MS, C̄ = ST MṠ, R̄ = ST R, B̄ = ST B. (18)

3 Controller

3.1 Operational constraint

In previous section the constraint (4) was considered. However it is difficult to
measure or estimatexICR value in practice. Therefore motivated by work done by
Caraccioloet al. [2] we put an artificial constraint based on (4) and assume that
xICR = x0 = const. It can be written as

vy + x0ω = 0, (19)

wherex0 ∈ (−a, b), whilea andb are geometrical parameters depicted in Fig. 1(a).
This assumption is consequently used in control development and can be interpreted
as an outer-loop term in the controller which limits skid of the vehicle in lateral
direction [13].

3.2 Control objective

For control purposes the following tracking error is defined

q̃ (t) ,
[

X̃ (t) Ỹ (t) θ̃ (t)
]T

= q (t) − qr (t) , (20)

whereqr (t) =
[

Xr (t) Yr (t) θr (t)
]T

denotes reference position and orien-
tation. We assume that for all times reference vector and itsfirst and second time
derivative are bounded, i.e.qr (t) , q̇r (t) , q̈r (t) ∈ L∞. Here we do not imposed
any additional restriction on reference signalqr (regulation case can be considered,
too). Additionally, in opposite to the previous works [5, 4,10, 13] we consider the
case for whichqr is defined in a such way that velocities associated with it do not
satisfy nonholonomic constraints.

In order to facilitate subsequent control we determine kinematic error assuming that
the constraint (19) is satisfied. Next, taking the time derivative of equation (6) and
using relationship (9) one can conclude that

˙̃q (t) = S (q) η − q̇r (t) . (21)



3.3 Position and velocity transformations

Kinematic controller based on Dixon’s scheme uses transformation which trans-
forms original system – in this case described by equation (21) – to an auxiliary
system (22) similar to nonholonomic Brockett’s integrator[1]

ẇ = uT JT z + f, ż = u, (22)

where variablesw ∈ R
1 andz ∈ R

2 form three-dimensional state vector,u ∈ R
2 is

a new velocity control vector andf ∈ R
1 is a drift of the system, whileJ represents

a constant, skew symmetric matrix defined as

J =

[

0 −1
1 0

]

. (23)

It can be proved that following transformation defines global diffeomorphism with
respect to the origin

Z ,
[

w zT
]T

= P
(

θ, θ̃
)

q̃, (24)

where

P
(

θ, θ̃
)

=





−θ̃ cos θ + 2 sin θ p12 = −θ̃ sin θ − 2 cos θ −2x0

0 0 1
cos θ sin θ 0



 . (25)

Using this transformation and calculating auxiliary errors we can find velocity trans-
formation which relates velocity vectorη with control signalu as follows

η = T (q̃, q) u + Π, (26)

where

T (q̃, q) =

[

L 1
1 0

]

(27)

is an invertible velocity transformation matrix,L = X̃ sin θ − Ỹ cos θ and

Π (q, qr, t) =

[

ωrL + Ẋr cos θ + Ẏr sin θ
ωr

]

(28)

is a time-varying vector associated with reference trajectory. In the similar way we
can calculate drift termf as follows

f = 2
[

ωr

(

x0 + z2 − Ẋr sin θ + Ẏr cos θ
)]

. (29)

Summarizing, the obtained velocity transformation allowsto use kinematic con-
troller to resolve practical stabilization for admissibleand non-admissible trajecto-
ries.



3.4 Control law

In this paper we propose to resolve control at kinematic level using algorithm based
on Dixon’s research. The more details concerning this approach can be found in
[5, 4, 13]. This controller allows to obtain practical stabilization [7], i.e. tracking
error is bounded to the assumed non zero value. The actual desired tunnel of er-
rors is determined by functionδd (t) = α0 exp (α1t) + ε1, whereα0, α1 > 0 are
constant parameters andε1 denotes desired steady-state value of vectorz norm.
This function describes envelope of an additional signalzd generated by tunable
oscillator.

In order to extend kinematic algorithm at dynamic level a backstepping technique
is used. Based on Lyapunov analysis we propose the followingcontrol law which is
robust on dynamic parameter uncertainty

τ , ¯̄B−1 (wJz + z̃ + Ydϑ0 + τa + k3ũ) , (30)

whereYd (ud, u̇d, q̃, θ, qr) ∈ R
2×6 represents known regression matrix as

¯̄Mu̇d + ¯̄Cud + ¯̄R = Yd (ud, u̇d, q̃, θ, qr) ϑ, (31)

¯̄M = T T M̄T , ¯̄C = T T
(

C̄T + M̄Ṫ
)

,

¯̄R = T T
(

C̄Π + M̄Π̇ + R̄
)

, ¯̄B = T T B̄,
(32)

with k3 > 0, whileud is a velocity control signal generated by kinematic controller
(see [13]),ϑ andϑ0 are actual and a constant, best-guess estimation of dynamical
parameter vector, respectively. According to [14] and [5] the termτa is defined as

τa , Yd

ρ2Y T
d ũ

∥

∥Y T
d ũ

∥

∥ ρ + ε2

, (33)

whereε2 is a positive constant scalar which can be made arbitrary small. The dy-
namic parameters in (31) are determined as

ϑ ,
[

m I µL µR µF µB

]T
∈ R

6 (34)

with weighted friction coefficients defined as

µL ,
bµs1 + aµs2

a + b
, µR ,

bµs4 + aµs3

a + b

µF ,
2a (µl2 + µl3)

a + b
, µB ,

2b (µl1 + µl4)

a + b

(35)

Remark 4 It can be proved [10] that proposed kinematic control law andits ex-
tension at dynamic level ensures practical stabilization yielding ultimately bounded
tracking error under assumptions that constraint (4) is satisfied, parameters uncer-
tainty is limited and trajectory signals are bounded that has been pointed in section
3.2.



4 Simulation results

In this section we present simulation results performed in Matlab/Simulink envi-
ronment to verify behavior of the controller. The parameters of the SSMR model
were chosen to correspond as closely as possible to the real experimental robot pre-
sented in section 1 in the following manner:a = b = 0.039[m], c = 0.034[m],
r = 0.0265[m], m = 1[kg], I = 0.0036[kg · m2].

Permissible torque signal and angular velocities of wheelswere saturated as:
τmax = 0.25[Nm], ωmax = 56[rad/s]. Friction parameters of the surfaceµsi

andµliwere modeled using scalar functions depending on actual position of center
of ith wheel expressed in the inertial frame and were supposed to bebounded as
follows: 0.02 ≤ µsi ≤ 0.18, 0.2 ≤ µli ≤ 0.8.

Remark 5 For comparison purpose initial conditions and the parameters assumed
in simulations correspond to those used in experiments which are described in sec-
tion 5.

Firstly, regulation problem is examined. The initial posture error was selected as

q̃ (0) =
[

0 0.5 −π/4
]T

. The control gains were given ask1 = 0.5, k2 = 0.5,
k3 = 10, while coefficients which determine accuracy in steady-state wereε1 =
0.01 andε2 = 0.1. The oscillator signal was initialized as follows

zd (0) = 1.5
[

cos (−π/3) sin (−π/3)
]T

and the coefficient which determines desired convergence oferrors was selected as
α1 = 0.4.

The best-guess estimates of mass and inertia were 20 and 50 percent higher, respec-
tively, than parameters assumed for the robot model. Next, estimates of friction
coefficients were selected asµL0 = µR0 = 0.1 andµF0 = µB0 = 0.5, while
bounding coefficientρ = 1. Furthermore, the constantx0 related to ICR position
was assumed to be equal to−0.02 [m].

In Fig. 3(a) performed trajectory in Cartesian space is depicted and the position and
orientation is marked at every second of simulation. From Fig. 3(b) it is clear that
initial errors are significant reduced and in steady-state are bounded as follows

∣

∣

∣
X̃

∣

∣

∣
< 5[mm],

∣

∣

∣
Ỹ

∣

∣

∣
< 5[mm],

∣

∣

∣
θ̃
∣

∣

∣
< 0.01[rad].

It is worth to note that convergence to the set of permissibleerrors is exponential.

In the next simulation trajectory tracking were examined. The sinusoidal admissible
reference trajectory were selected as

Xr = 0.1t [m] , Yr = 0.3 sin (0.6t) [m] ,

while θr was numerically calculated to satisfy the constraint (19).The initial oscil-
lator signal was selected as

zd (0) = 0.4
[

cos (−π/2) sin (−π/2)
]T
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Figure 4: Regulation case

and the gain coefficientk2 was increased to 1 in comparison to the previous simu-
lation. Other parameters of the controller remained unchanged.
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Figure 5: Admissible trajectory case

The reference and performed trajectory are presented in Fig. 4(a) using stroboscopic
view, while position and orientation errors are depicted inFig. 4(b). These steady-
state errors are bounded as

∣
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∣
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∣
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Ỹ

∣

∣
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∣

∣

∣
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∣

∣

∣
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It should be noted that further error reduction in steady-state is possible by choosing
smaller valueε1. Next, convergence of errors may be improved by increasing value
α1. However, tuning of the controller parameters should take into consideration
limitation of torque and velocity signals since forcing toosmall desired errors or
too fast convergence may result in bad performance of the controller and may cause
chattering phenomenon.



5 Experimental verification

5.1 Experimental setup

The experimental setup depicted in Fig. 6 consists of SSMR mobile robot built on
the redesigned MiniTracker-3 robots and test board on whichthe robot moves. To
localize the robot we were not able to use classical odometrysystem because of slip
phenomena. Instead of it we used an external vision system [6] in the form of video
camera SONY DCR-TRV900E and PC Pentium 4 1.6 GHz computer equipped with
frame-grabber card Matrox CORONA which converts analog signal to digital sig-
nal. To inquire information about actual robot posture two-dimensional images were
processed by software algorithm operated by the computer asthey came from the
camera. To simplify and improve recognition of the robot an additional color mark-
ers were placed on it.

The software has been written in C++ lan-

Figure 6: Experimental setup

guage and were performed under MS Win-
dows 2000 system. The system synchroniza-
tion was achieved by using frame-grabber
card which allows to obtain 25 measurements
per second. The communication between the
robot and PC was ensured by radio link with
throughput up to 115,2 kbit/s.

The main drawback of used localization sys-
tem lies in relatively small frequency of data
acquisition (25 times per second) and small
accuracy of determining orientation of
the robot. As a consequence measurement of
angular velocity were noisy and therefore it
was no possible to implement robust control
law presented in section 3.4.

Instead of it control task was divided between
PC and internal controller of the experimen-
tal robot. Next, we modified the controller
at kinematic level by calculating directly de-
sired angular velocitiesωdL andωdR of the left and right wheels, respectively, ac-
cording to (26) and (3) as follows

[

ωdL

ωdR

]

=
1

r

[

1 c
1 −c

] [

1 0
0 − 1

x0

]

(Tud + Π) , (36)

where parameterc has been identified experimentally.

These signals determined by PC using actual posture measurement were sent to the
robot using radio-link. The on-board PI controller workingwith frequency 512Hz
controlled velocity of wheels using current forcing mode [9] that gives short tran-
sient phase during regulation process.



To calculate oscillator signalzd trapezoidal integration routine was used. In addition
to ensure numerical stability of the algorithm scaling operation was performed to
stabilized envelope of‖zd‖ determined by functionδd (t).

Figure 7: Controller diagram

Remark 6 It should be noted that implemented control scheme is based on assump-
tion that longitudinal slip is negligible. In theory this assumption would not be
necessary for overall controller previously verified in simulation section.

5.2 Results

To validate the proposed simplified algorithm results of experiments are presented.

Firstly, we considered the regulation problem, i.e. parking problem. The parameters
of the controller and initial conditions were presented in section 4, howeverε1 was
increased to0.05 to ensure better robustness and less sensitiveness to measurement
noise.

The results are depicted in Figs. 7(a)–7(b). From Fig. 7(a) one can see that steady-
states position and orientation errors were bounded as follows
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In the next experiment trajectory tracking was verified. Thereference trajectory was
the same as it used in simulation and the parameterε1 was selected asε1 = 0.15
to improve robustness of the controller. From Fig. 8(a) and 8(b) one can see that
accuracy of tracking is significantly less than accuracy obtained for regulation that
results mainly from unmodeled dynamic effects (for exampleslip phenomenon) and
delays in the control loop. The tracking errors were boundedas
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Figure 8: Experimental results – regulation case
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Figure 9: Experimental results – trajectory tracking case

6 Summary

In this paper the control algorithm which resolves both trajectory tracking and reg-
ulation problem for 4-wheel skid-steering mobile robot is presented. In particular
much attention is dedicated to show implementation and experimental results for
the controller. We believe that further improvement of accuracy is possible by using
a new measurement and localization system in form of monolithic optical sensors
and accelerometers. It would allow to implement overall control scheme presented
in theoretical description.

On the other hand it is worthy to note that SSMR is quite difficult to control that
results from unmodeled dynamic effects, hence achieving small tracking errors may
be impossible. Therefore the algorithms which ensure practical stabilization with
good robustness on unmodeled phenomena can be very useful inpractice [8].
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