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Abstract: The Internet of Things (IoT) solutions are demonstrating a significant impact in 
various sectors. These solutions encompass diverse applications, ranging from machine-to-
machine communication to human-to-machine interaction within the same system. Various 
types of IoT application protocols have been developed to address these needs. While some 
IoT protocols enable direct communication between devices, others rely on server-based 
communication. Both forms of communication can coexist within the same IoT solution. 
However, utilizing multiple protocols in low-capacity IoT nodes can result in performance 
degradation. In this study, an adaptive protocol is proposed, which combines server-based 
and direct access protocols. This study also explains the working principle of the proposed 
protocol and compares its functionality with MQTT using OPNET and real environment.  
It was observed that the proposed protocol remained functional even in the event of a 
server failure. Furthermore, the protocol was found to be efficient in terms of bandwidth 
usage. Conversely, it exhibited lower latency in the direct communication method. 
Although the proposed protocol had slightly higher latency in server-based communication, 
it remained operational. 

Keywords: Adaptive IoT Protocol; Application Layer IoT Protocols; IoT Messaging 
Protocols; IoT Protocol Design; Protocol Simulation 

1 Introduction 

Internet of Things (IoT) environments are becoming more and more common 
every day and are used in many areas such as smart cities, smart campuses, smart 
homes and smart buildings. Developments in sensor and communication 
technologies and low cost of hardware have caused many segments, from 
amateurs to professionals, to use IoT applications. The heterogeneous nature of 
IoT and the diversity of applications have caused to complex solutions.  
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The existence of multiple IoT hardware types, especially in environments such as 
smart factories and smart campuses, has also led to the diversity of 
communications. Some communications are established directly between 
machines (M2M), while others occur through servers or the cloud. It is possible to 
see both types of communication in a complex IoT solution. On the other hand, 
the hardware used in IoT applications are generally have limited resources. It is 
obvious that low-capacity IoT nodes cannot provide adequate support in 
environments where too much data is produced, transferred and processed. 
Therefore, new application protocols have been developed for IoT environments 
Application protocols such as MQTT, CoAP, and AMQP have been developed for 
this purpose and can run on low-resource devices in IoT environments. 
Considering the communications in IoT solutions, it is possible to divide them into 
two categories: directly communication protocols and server-based protocols [1] 
MQTT and AMQP need a server (broker) for communication. CoAP, on the other 
hand, is capable of communicating directly between two nodes. In a complex IoT 
solution, both direct communication and server-based communication can be seen 
in the same environment. Direct communication method can be used especially in 
automation applications, M2M communications and applications that require high 
speed and low latency [2]. Both methods have their pros and cons[3]. Server-
based communication may cause single point of failure (SPoF - Single Point of 
Failure[4]. In addition, the use of a central server in data transmission is against 
the distributed nature of IoT, where resources are distributed to things [5] [6]. 
Also, the presence of an additional device between source and destination can 
cause additional delay [7]. There may be performance degradation such as 
exponential increase in processor consumption in direct communication method. 
In addition, the direct communication method is inadequate, especially when data 
needs to be stored or analysed, and when decision-making mechanisms are needed 
[8]. Despite their pros and cons, we may see more IoT applications in the near 
future where both approaches are required in the same solution. But constrained 
devices in IoT environments are a major challenge for running two different 
protocols in the same solution [9]. Adding an additional protocol, to a complex 
solution, creates more complexity. It also requires an intermediary translator for 
the two protocols to communicate with each other, which also means additional 
complexity. 

Choosing the most appropriate application layer protocol depends on the purpose 
of the solution and the changing states of the network. These states include 
bandwidth usage, packet loss probability, end-to-end delay, throughput and the 
size of the transmitted packet [10]. However, these parameters change frequently 
in the network environment [11]. When the state of the network changes, the 
selected protocol may then experience performance issues. Therefore, there is a 
need for a protocol that can adaptively switch between communication methods 
according to the changing state of the network. In this study, a new adaptive 
application layer protocol has been developed that can support both 
communication approaches. It is possible to see many performance comparisons 
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of IoT application protocols in the literature. The protocol developed in this study 
has not been compared with all IoT protocols. But to evaluate the performance of 
the developed protocol, it is compared with the MQTT protocol as benchmark 
[12]. In this study, a new protocol is proposed that combines both direct 
communication and server-based communication into a single approach. Thus, a 
single protocol can be used instead of two different protocols that support 
different approaches in the same environment. The contribution of the article can 
be summarized as follows: 

• Introduction of a new hybrid protocol that supports different IoT approaches 

• Development of a light protocol that can work in complex IoT solutions 

• Introduction of a new adaptive mechanism that combines the advantages of 
server-based operating protocols with the advantages of directly 
communicating protocols into a single protocol 

Some limitations were taken into account in the design of the protocol. 
Accordingly, the environment in which the protocol will work is assumed to be 
safe, therefore security principles are out of scope. Another limitation is related to 
the size of the data. In IoT environments, especially considering the small size of 
the data produced from the sensors, environments where the amount of data 
carried in a single package is at most 1024 Bytes. It is designed to be used in the 
transfer process of data obtained from sensors, especially in environments such as 
campus networks. The other parts of this article are organized as follows: In the 
second part, related work on this subject, is included in Chapter 2. The working 
phases, components, diagrams, and packet structures of the protocol are explained 
in the Chapter 3. In Chapter 4, the behaviors of the protocol in OPNET simulation 
and its performances in real-world scenarios have been evaluated. In Chapter 5, 
results and discussions focus on the academic contributions made by the study and 
evaluations that will provide insights for the future are presented. Chapter 6 
provides related conclusions. 

2 Related Work 

In studies on existing IoT application protocols, these protocols can be superior in 
different scenarios and under different conditions. In the study of Thangavel et al. 
[13], MQTT and CoAP protocols is examined in terms of packet loss, message 
delays and data transferred per message through middleware implementation.  
In the study, it is stated that MQTT has a lower delay in low packet losses and 
COAP has a lower delay in high packet losses. Çorak et al. [10] evaluate the well-
known IoT protocols in real world testbed. In this study where packet creation 
time and packet delivery time were evaluated as metrics, it was stated that XMPP 
performed worst, while CoAP and MQTT performed approximately the same. 
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Moraes et al. [14] compare AMQP, CoAP and MQTT protocols for throughput, 
message size and packet loss, and the authors state that CoAP showed the best 
results. In the study of Maksymyuk et al. [15], payload transmission of MQTT and 
CoAP is examined in NB-IoT environment. The results show that MQTT 
performs better for in-band deployment, while CoAP shows higher throughput. In 
Naik's study [16], IoT protocols are examined from various aspects. It is stated in 
the research that AMQP is applied more successfully in big projects and MQTT is 
used by many organizations. De Caro et al. [17] perform a qualitative and 
quantitative comparison between MQTT and CoAP in their study. The authors 
state that performance may vary depending on the circumstances. For example, 
CoAP is successful in terms of bandwidth usage, whereas MQTT is successful in 
20% packet losses. Chen and Kunz [18] evaluate the MQTT, CoAP, DDS and 
Custom UDP protocols in the medical environment using a network emulator.  
In the study, the observed performance of the protocols is reported, and it is stated 
that DDS uses higher bandwidth than MQTT. Mijovic et al. [19] compare the 
performance of CoAP, webSocket and MQTT protocols. Study shows that CoAP 
achieves the highest protocol efficiency and the lowest average RTT. Collina et al. 
[20], provide a quantitative analysis of MQTT and CoAP for various traffic 
conditions. The results show that MQTT provides the smallest delays, but CoAP 
performs better in heavy traffic. In Bandyopadhyay and Bhattacharyya study [21], 
it is demonstrated that DDS and MQTT protocols do not experience any packet 
loss in networks with an average 25% packet loss and 400 ms delay. 

The heterogeneous nature of IoT environments has also revealed the need for 
multiple protocols to work together in the same environment. For this reason, 
studies involving various hybrid approaches are also conducted. In the study [9], 
conducted by Bellavista and Zanni to support the scenarios of having multiple IoT 
application protocols in the same environment, an architecture is developed in 
order to enable CoAP and MQTT protocol to work together. In the study, it is 
state that the architecture offers high scalability in network environments with 
high traffic and device density. In the study of Derhamy et al. [22], It is state that 
using middleware software creates a scaling problem, alternatively, SOA-based 
protocol transformation is proposed. The authors stated that the method they 
developed showed low delays. Lee et al. [23], designed SDN based hybrid IoT 
communication framework to achieve bi-directional data exchange without further 
modification on existing protocols. In the study of Desai et al. [24], conversion of 
XMPP, CoAP, and MQTT messages is achieved through the multi-protocol proxy 
architecture. Khaled et all. [6], introduce “Atlas Framework” for the interaction of 
different communication protocols. The results show the feasibility of enabling 
seamless heterogeneous communication between things with an acceptable energy 
cost. 

As can be seen from the studies, the performances of the protocols that show 
different approaches according to the dynamic variables in the network also 
change. Considering that using multiple protocols in the same environment causes 
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additional delays and scalability problems, protocols that act differently according 
to the dynamic variables in the network are needed. 

3 Adaptive Hybrid IoT Protocol 

As a new approach to the Internet of Things, we designed an adaptive IoT 
protocol (hIoT). This section summarizes the quick overview of the developed 
protocol. There are three components in the adaptive IoT Protocol: IoT 
Coordinator, Client and IoT Gateway (IoTGW). 

The IoT Gateway undertakes the task of presenting the data, which is the source of 
the data and obtained from the sensors to the network environment. The client 
component represents the user, hardware or application that wants to access the 
data. The coordinator component, on the other hand, acts as an intermediary server 
(broker) for data transfer in server-based communication. Likewise, the records of 
the services offered in the network through the IoT Gateway components are also 
kept in the coordinator component. The services offered by IoTGW have been 
developed in a “topic” format to comply with the MQTT protocol. 

 
Figure 1 

Hybrid IoT protocol has three phases: Service register, Service query and Data transfer 

The working principle of the protocol is examined in three phases (Service 
Register, Service Query and Data Transfer) as shown in Figure 1. In the Service 
Registration phase, the IoT Gateway component performs the task of registering 
the services (temperature, humidity, motion, light intensity, etc.) provided by the 
directly connected objects (sensors) to the coordinator component. The queries 
made by client applications about how to access the services, and the response by 
the coordinator, which includes the access information to the service, constitutes 
the service query phase of the architecture. At this phase, the server can respond to 
the access method, that is, direct access or access through the server. The data 
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exchange between the client and the gateway that provides the service, either 
directly or through the server constitutes the data transfer or data transmission 
phase. 

3.1 Packet Header 

The packet header specifies the types of packets used in the hybrid application 
protocol, encompassing flags, addressing, and additional payload for 
communication. The header details of the developed protocol are illustrated in 
Figure 2. 

 
Figure 2 

The packet header of the developed protocol 

The header consists of 4 fixed bytes (32 bits) and data fields. The first field in the 
header is the "Type" field, which consists of 3 bits. Various bit sequences in this 
field represent values that indicate the packet type. The "Flags” is composed of a 
total of 5 bits. These flags store information that is necessary for communication 
to occur. The 24-bits "Packet Identifier" field, which ensures the uniqueness of 
each packet. 32-byte "Data Field" in the packet header used for transporting data 
in the protocol. The "Extended Data Field" has been developed to carry larger data 
sizes when needed. This field can carry additional payload of up to 1024 bytes, 
and its usage is determined based on the state of the "EX" bit (flag), which is 
optional. 

The first bit in the 5-bit flag field is the "ACK" flag. This one-bit field is used to 
identify acknowledgment packets during the process of responding to packets.  
The second flag is used in the reset packet to change the access type of the service 
provided through the IoT Gateway. If this flag is marked as "1," the Gateway 
hardware that receives the packet loses the direct access feature provided for the 
service. In this case, the IoT Gateway hardware will not consider any packets sent 
from devices other than the coordinator. Therefore, to access the relevant service, 
communication through the server is mandatory. This allows for instant changes 
in access methods based on the network's status, as the access method is 
determined by the DC flag. If this flag is set, direct access to the service is 
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possible. The SRV bit within the flags indicates that the traffic consists of packets 
originating from the server. In other words, the SRV bit is set to "1" in every 
packet generated by the server. The use of the additional data-carrying field in the 
packet (Extended Data Field) is determined based on the EX-bit. 

3.2 Packet Types 

In the developed model, there are different types of communication occurring at 
each phase. These communication types are determined by the packet types of the 
hybrid application protocol. Each packet type corresponds to different steps in the 
communication process. To fulfill these steps in the protocol, there are eight 
packet types. The names and functions of these packets are specified in Table 1. 

Table 1 
Types of packets and their descriptions 

Type Value Description 
Control 0 It is used to verify whether the IoT Coordinator and IoT 

Gateway are accessible. 
Reset 1 It is used to reset the access type of the service provided 

through the IoT Gateway. 
Register 2 It is used during the registration process of services provided 

through the IoT Gateway to the IoT Coordinator server and in 
the response given to this registration process. 

Error 3 It is the packet sent in various error situations during 
communication and contains an error code. 

Query 4 It is the packet used by the client wishing to access data during 
the service discovery process, requesting access information for 
the service. 

Reply 5 It is the response provided by the coordinator to the service 
query packet. 

Request 6 It is the packet sent by the client to request information about 
the service provided at the IoT Gateway.  

Response 7 It contains the data requested by the client and is sent by the IoT 
Gateway in response to the request packet 

These types are defined in the Type field of the packet header. 

3.3 Diagrams of Components 

In IoT applications, the M2M (Machine-to-Machine) and M2P (Machine-to-
Person) connectivity approaches involve either humans or machines as the 
requesting party for data. In the context of this study, the term "Client" is used to 
refer to the application, software, or hardware that makes data requests and can be 
used in both types of connections. 
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At the initial stage, the Client generally has two main states. If access information 
related to the required topic is cached in memory, it transitions directly to the send 
request state where data requests can be made without the need for further queries. 
Otherwise, it transitions to the send query state to proceed to the stage where the 
service will be provided. In this stage, a query packet is sent to the IoT 
Coordinator component, inquiring about how to access the desired service. If a 
previous query has been made regarding the topic, the records related to that query 
are stored in the Client's cache. In this case, the IP address of the device where the 
service is provided, or more precisely, the device where a specific topic is located, 
is obtained directly without the need for another query, ensuring minimal delay. 
With access information now known for the device providing the service (IoT 
Gateway or IoT Coordinator), it transitions to the request state. The query state 
(indicated as send query in the flowchart) corresponds to the stage of requesting 
access information from the IoT Coordinator and aligns with the Service query 
phase of the hybrid application protocol. After sending the query packet 
containing topic information, there is a waiting period for a response to the query. 
During this time, if no notification is received from the IoT Coordinator, the 
process is repeated two more times (for a total of three times). If, after the 
maximum number of retries, there is still no response to the query, the Client is 
informed that the query has not been answered, and the process comes to an end. 
When a query response arrives from the Coordinator, the Client retrieves the 
Service IP address (access information for the component providing the service) 
from the response, and it proceeds to the request stage. Upon request, data from 
the IoT Gateway or Coordinator is incorporated into the Response packets. 
Similar to the query state, the request is reiterated three times, with an idle time 
for each operation. Upon receiving the Response packet, information is extracted 
and transmitted to the client software. If no Response packet is received, the 
software is notified with a "no response" message. 
The most important component in the architecture of the developed application 
protocol is the IoT Coordinator component. The role of the IoT Coordinator is to 
host the information that clients will need during the service discovery process, 
register resources associated with the topic provided through the IoT Gateway in 
the local resource directory, and ensure coordination in communication. 
Additionally, the IoT Coordinator is responsible for monitoring the accessibility of 
services within the IoT ecosystem and determining the method of data transfer, 
whether direct or through a server. The coordinator oversees service resources and 
guides the process of accessing these services. It routes client traffic to the 
appropriate service resource by analyzing service discovery queries from clients. 
This device serves not just as a resource for service discovery, but also operates as 
an intermediary for specific service types defined during the registration process. 
The IoT Gateway is one of the critical hardware components in the IoT 
ecosystem. The role of the IoT Gateway component in this architecture is to 
receive data from objects and transform it into a format that can be used on the 
internet or in a network environment. The IoT Gateway can respond directly to 
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data requests from clients and can also respond through the server (IoT 
Coordinator). For each service provided through the IoT Gateway and associated 
with a topic, the access method is made possible through the packets sent in the 
Service Registration Phase. After this process is approved by the coordinator, the 
gateway component can respond to data transfers from clients. The IoT Gateway 
component uses Control packets to verify whether it is in communication with the 
IoT Coordinator. In the event that the Coordinator becomes unavailable or for any 
reason is unreachable, the IoT Gateway switches itself to direct access mode to be 
able to respond to Request and Query packets sent by clients and to maintain 
connectivity. 

4 Experimental Analysis 

To evaluate the performance and functionality of the protocol developed within 
the scope of this study, a network topology was prepared in an environment 
isolated from other network traffic. In this study, 10 Mbps Ethernet is simulated, 
MQTT and our IoT protocol are evaluated from various aspects. In topology, three 
different LANs are connected by a router. Devices connected to a switch act as 
"Publishers" devices in MQTT, and act as "IoTGW" devices for adaptive IoT 
protocol. Devices connected to the switch act as "Subscriber" and "Client" for 
MQTT and hIoT, respectively. By changing the number of devices connected to 
the switches, bandwidth consumption and latency values were compared for both 
protocols. The server acts as “Broker” in MQTT and act as “IoT Coordinator” in 
hIoT. In this experimental topology, the task of IoTGW is to capture hIoT packets. 
For this reason, the IoTGW Node Model is customized to receive only UDP 
messages in the OPNET simulation. In comparison, QoS-0, the fastest level of 
service quality for MQTT, was considered. Payload values of the packages used in 
the MQTT protocol are given in the Table 2. All packet sizes are fixed, except for 
Publish as seen in Table 2. The size of publish messages has been defined to 
normal distribution between 25-75 Bytes. The information of the MQTT protocol 
used for performance comparison was determined according to the values of the 
packets captured with the Wireshark software. 

Table 2 
MQTT Packets and Payloads 

MQTT Packets Payload Size (Byte) 
Connect 39 
Connect ACK 4 
Subscribe 18 
Publish 25-75 
Ping Request 2 
Ping Response 2 
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According to the MQTT protocol, the traffic is divided into phases and the 
payload values in each phase are created in the simulation with "Task 
Configuration". The payload values in the phases of the developed hIoT protocol 
are shown in Table 3. These values are taken from the fixed size header 
information. The transferred data size is the same size as in MQTT. 

Table 3 
Adaptive Hybrid IoT Packets and Payloads 

Hybrid Application Protocol Phase Payload Size (Byte) 
Service Register 32 
Service Query 32 
Data Transfer -75 

4.1 Ethernet LAN Delay 

The results of the Ethernet LAN delay performed in the environment of 100 nodes 
are shown in Figure 3. Direct methods of the hIoT protocol and the MQTT-QoS0 
are compared. 

 
Figure 3 

MQTT and hIoT Ethernet delay comparison 

Compared to the delays in Ethernet, the difference between MQTT and hIoT was 
higher at the beginning, while the difference between this delay decreased in the 
following phases. There are significant differences between the delays at the 
beginning, because the MQTT's additional payload in the Connect phase and the 
response from the server also have a relatively high load amount. However, in the 
later stages (MQTT Publish, Subscribe and Ping), the difference between the lags 
has closed as these overhead values fall to an average of 2 Bytes. 
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4.2 Server Traffic Comparison 

Performance results regarding the traffic on the servers in the topology proposed 
with the MQTT server are shown in Figure 4. Since the server is the center of 
communication in MQTT, its delay continues at a fixed value. However, in the 
proposed protocol, when the direct access method is used, the server only plays a 
role in the service discovery process. Therefore, it exhibits lower latency in the 
direct access method. 

 
Figure 4 

Server traffic comparison for MQTT and hIoT 

Since the payload of the hIoT protocol is less, the number of packets received per 
second decreases over time. When the number of packets received by the server 
and the number of packets on the network is compared, it appears that the server 
does not receive traffic on the network after its task is completed. 

 
Figure 5 

IoT Gateway traffic (above) and IoT Coordinator traffic (below) 
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A comparison of the messages received by the server and IoTGW nodes is given 
in Figure 5. In the simulation, one hIoT packets were sent every 5 minutes. It is 
seen that data transfer between IoTGW and Clients continues but the server does 
not have an active role in data transfer phase. Thus, the SPoF problem is reduced 
in the data transfer process. 

4.3 Bandwidth Consumption and Functionality 

Another performance comparison in the simulation is the total bandwidth usage in 
the campus network where the IoT Gateways, Clients and Server are modelled. 
The comparison results of the total throughput values in the IoTGW network with 
10 nodes are shown in Figure 6. 

 
Figure 6 

Bandwidth usage comparison in Publisher LAN 

Bandwidth usage for MQTT and hIoT protocols decreases over time in the 
ethernet network where the publishers (IoTGW) are located. When looking at the 
total bandwidth usage in both the server network and the publisher network, it is 
seen that the recommended protocol consumes lower average bandwidth. Low 
bandwidth usage affects not only network performance but also low power 
consumption and extends sensor lifetime. One of the performance evaluations is 
related to the total bandwidth consumption by the number of devices. In a scenario 
with 100 Clients (MQTT Subscriber) and 100 IoT Gateways (MQTT Publisher), 
(all clients communicate with all gateways) 50±25 bytes of data were sent and the 
hIoT protocol and MQTT protocols were compared. 
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Figure 7 

The number of packets to be transmitted increases in hIoT, while there is no change in MQTT 

As the number of devices increases, the number of end-to-end hIoT 
communications increases (Figure 7). Therefore, Pub / Sub communications such 
as MQTT perform better in terms of bandwidth consumption. However, the risk of 
SPoF in server-based communication reduces functionality. To evaluate the 
functionality of the developed protocol, the server-based communication of the 
hIoT protocol and the communications of MQTT were compared. In this scenario, 
each client is connected with only one IoTGW. In the hIoT server-based approach, 
MQTT has higher performance in terms of bandwidth usage. However, in the use 
of the MQTT protocol, the data flow between publishers and subscribers will be 
interrupted in case of server failure. In the simulation, it is assumed that the server 
was disabled for 50 seconds. 

 
Figure 8 

Comparison of packet flows per second in the event of server failure 

In the scenario where the functionality of the hIoT is evaluated, it is shown in 
Figure 8 that the network where MQTT subscribers cannot receive any packets 
when the server fails. However, although it consumes higher bandwidth in direct 
communication, there is no packet receiving problem in the network where the 
hIoT protocol is used, and data transfer still occurs. 
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Figure 9 

CPU Usage comparison 

In the publisher network with 10 nodes, the evaluation of CPU usage is shown in 
Figure 9. Although the Adaptive Application Protocol shows less CPU usage, 
there is no big difference between MQTT and hIoT. 

Determining the application layer protocol to be used in IoT ecosystems 
consisting of complex solutions is an extremely important issue in order to benefit 
from the advantages that the Internet of Things promises to offer. Although the 
applications in which IoT devices are used are similar to each other in terms of 
basic concepts, they may have different characteristics. 

Within the scope of this study, the protocol developed in the evaluations in the 
simulation environment was compared with the MQTT protocol. When examined 
in terms of latency, it is seen that hIoT has a lower latency value than MQTT in 
end-to-end direct access method. However, it has been observed that server-based 
communications have higher latency than MQTT. In the tests carried out in the 
simulation environment, it is seen that the bandwidth consumption increases in the 
direct accesses that a hundred users want to make at random times to one hundred 
IoT Gateways. This can be seen as a disadvantage of hIoT. To overcome this 
disadvantage, it is a good practice to change access methods according to the type 
of services gateways provide. 

One of the performance evaluations of the developed protocol is the delay times 
depending on the amount of load carried and the bandwidth consumed depending 
on the amount of load. Evaluations show that hIoT performs better at low 
overheads. Since it is designed to transfer data from hardware that is expected to 
produce data at low dimensions, such as sensors, the data transport area is limited 
to 1024 bytes in hIoT and the package structure has been developed accordingly. 
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4.4 Empirical Experiment Results 

In the scope of this study, to evaluate the performance and functionality of the 
developed protocol, a closed network topology, as shown in Figure 10, has been 
set up in an environment isolated from other network traffic. 

 
Figure 10 

The topology of the experiment conducted in a real-world environment 

In this study, a closed network topology as shown in Figure 9 has been designed 
to evaluate the performance of the developed protocol with real hardware.  
The Hybrid Application Protocol is compared to the MQTT protocol, commonly 
used in IoT applications, in terms of functionality, bandwidth usage, latency, and 
various other aspects. The topology includes two Arduinos, a PC, a laptop and a 
Raspberry PI. Additionally, a laptop computer with Wireshark software installed 
is used to capture and analyze all generated traffic. In the MQTT protocol, a 
Raspberry Pi acts as the broker server. Arduino devices function as MQTT 
publishers, while the PC serves as an MQTT subscriber. In the developed 
protocol, the Raspberry Pi device acts as the IoT Coordinator, the PC as the client 
component, and the Arduino as the IoT Gateway. In both scenarios, the PC and 
Arduino devices are connected to each other through a standard Ethernet switch 
that provides IEEE 802.3 Ethernet connectivity. Furthermore, two routers are 
connected to analyze the impact of various bandwidths. The effects are studied by 
altering the bandwidths between the routers. Each action performed in the real 
environment is repeated 30 times to obtain average latency values. The values 
obtained for different bandwidths are presented in the Figure 11. 
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Figure 11 

End-to-end delay values at different bandwidths 

According to this graph, the Hybrid Application Protocol exhibits lower latency 
when the bandwidth used is relatively low. To assess the behavior of the 
developed protocol in carrying different payload sizes, latency times were 
evaluated based on payload sizes in the topology mentioned in Figure 9.  
The comparisons of average latency times obtained in the experimental study 
based on the transmitted data size is shown in Figure 12. 

 
Figure 12 

Latency based on different payloads on data transmission 

It is observed that in the direct access method of the developed protocol, where 
there are no additional devices in between, the latency times are lower for each 
amount of data transmitted. However, in server-based data communication, 
additional delays occur due to the presence of the IoT Coordinator component, 
resulting in higher latencies compared to the MQTT protocol. In IoT ecosystems, 
when access time to data is critical, it appears that the direct access method would 
be more suitable. In applications where a certain amount of latency is acceptable 
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and direct access to the IoT Gateway is not desired or access control is required, 
server-based communication is recommended. Additionally, adaptive switching 
based on real-time network conditions can also be implemented. The average 
latency values experienced depending on bandwidths are provided in Table 5. 

Table 5 
Average latency values on service query 

Band width (bps) Average discovery time (msec) 
1200 890 
2400 384 
9600 99 

14400 67 
64000 18 

125000 15 

As can be seen from the table, the average discovery time is inversely proportional 
to the bandwidth. In high bandwidths, this time is very short, around 15 msec, 
while it increases when the bandwidth decreases. 

5 Results and Discussion 

In Internet of Things (IoT) solutions, various protocols are used, each with their 
advantages in various aspects. In the scope of this study, the proposed hybrid 
protocol stands out due to its ability to perform both server-based and direct 
communication. Furthermore, in empirical and simulation experiments, it is 
observed that the direct access feature consumes lower bandwidth. Accordingly, 
in the comparison between the hIoT protocol and MQTT, it can be seen that hIoT 
requires lower bandwidth. The features of the protocol we have developed are 
summarized comparatively in the table below. The table includes a comparison 
with the most used MQTT and CoAP protocols. 

Table 6 
Comparison of the protocol from various aspects 

Feature hIoT MQTT CoAP 
Access model Request/Response Pub/Sub Request/Response 
Topic Usage Yes Yes No 
Serive Discovery Yes No Yes 
L4 Protocol UDP TCP/UDP UDP 
Server based access Yes Yes No 
Direct access Yes No Yes 
Adaptive access Yes No No 
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The term "adaptive access" as indicated in the table refers to the ability to switch 
between direct access and server-based access. One of the performance 
evaluations of the developed protocol is the latency depending on the amount of 
load carried and the bandwidth consumed depending on the amount of load. 
Evaluations show that hIoT performs better at low overhead. Since it is designed 
to transfer data from hardware that is expected to produce data in low sizes, such 
as sensors, the data transfer area is limited to 1024 bytes in hIoT and the packet 
structure has been developed accordingly. 

Conclusions 

The protocol developed in this study provides a new approach, to the mix of 
existing approaches. The protocol offers both server-based access and direct 
access. The ability to determine the access method of IoT Gateway devices is 
important. Bandwidth consumption is a critical issue in the IoT ecosystem. 
Protocols such as MQTT operate in the Pub/Sub architecture. In most cases, the 
broadcaster sends data to the subscriber periodically, even if the broadcaster does 
not need the data at the moment, which is a waste of bandwidth. The "on-demand 
access" method, is applied in the developed protocol and unnecessary bandwidth 
consumption is reduced. The protocol developed in simulation was compared with 
the MQTT protocol. When examined, in terms of latency of the two access 
methods offered by adaptive application protocol, direct access method is faster 
than MQTT, while server-based method is slower. When examined in terms of the 
bandwidth consumed, the adaptive application protocol consumes less bandwidth. 
In the evaluations carried out in the simulation environment, as the number of 
nodes increases, the bandwidth consumption for the direct access method also 
increases. Adaptive Application Protocol has both server-based communication 
and direct communication capability. The potential to switch between these two 
methods, is an important advantage. 
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