
Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 117 –

Language for a Distributed System of Mobile
Agents

Martin Tomášek
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia; e-mail: martin.tomasek@tuke.sk

Abstract: Types with behavioral scheme for mobile ambients are suitable for expressing the
dynamic properties of mobile code applications, where the main goal is to avoid the
ambiguities and possible maliciousness of some standard ambient constructions. We can
statically specify and check access rights for the authorization of ambients and threads to
communicate and move. We define a language which expresses software agents migration
in the space of distributed places. This allows us to understand various aspects of code
mobility.

Keywords: code mobility; software agents; type system

1 Introduction

Communication between mobile ambients [1] based on a concurrency paradigm
represented by π-calculus [2] is represented by the movement of other ambients of
usually shorter life which have their boundaries dissolved by an open action to
expose their internal threads performing local communication operations. Such
capability of opening an ambient is potentially dangerous [3, 4, 5]. It could be
used inadvertently to open and thus destroy the individuality of an object or
mobile agent. Remote communication is usually emulated as a movement of such
ambients (communication packages) in the hierarchy structure.

We intend to keep the purely local character of communication so that no hidden
costs are present in the communication primitives, but without open operation.
This solves the problem of the dissolving boundaries of ambients, but disables
interactions of threads from separate ambients. We must introduce a new
operation move for moving threads between ambients. The idea comes from
mobile code programming paradigms [6] where moving threads can express
strong mobility mechanism, by which the procedure can (through move operation)
suspend its execution on one machine and resume it exactly from the same point

M. Tomášek Language for Distributed System of Mobile Agents

 – 118 –

on another (remote) machine. This solves the problem of threads mobility and by
moving threads between ambients we can emulate communication between the
ambients.

The advantages of our approach are shown in the natural way of encoding the
semantics of language for adistributed system of mobile agents. First, we discuss
the code mobility for better understanding and then we show how to naturally
express objective and subjective mobility implemented in various software
applications. Respecting all aspects of code migration paradigms, we are able to
propose the language for mobile agents distributed system specification.

2 Revised Calculus of Mobile Ambients

Abstract syntax and operational semantics of our calculus are based on abstract
syntax and operational semantics of ambient calculus including our new
constructions.

2.1 Abstract Syntax

The abstract syntax of the terms of our calculus is the same as that of mobile
ambients except for the absence of open and the presence of the new operation
move for moving threads between ambients. We allow synchronous output and the
asynchronous version is its particular case. The abstract syntax consists of two
domains:

::M = mobility operations

 | n Name

 | in M move ambient into M

 | out M move ambient out of M

 | move M move thread into M

 | .M M ′ Path

::P = Processes

 | 0 inactive process

 | |P P′ parallel composition

 | !P Replication

 | []M P Ambient

 | (: [])n Pν P B name restriction

 | .M P action of the operation

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 119 –

 | .M P〈 〉 synchronous output

 | (:).n Pμ synchronous input

2.2 Operational Semantics

The operational semantics is given by reduction relation along with a structural
congruence in the same way as those for mobile ambients.

Each name of the process term can figure either as free:

() { }fn n n= ()fn = ∅0

() ()fn in M fn M= (|) () ()fn P P fn P fn P′ ′= ∪

() ()fn out M fn M= (!) ()fn P fn P=

() ()fn move M fn M= ([]) () ()fn M P fn M fn P= ∪

(.) () ()fn M M fn M fn M′ ′= ∪ ((: [])) () { }fn n P fn P nν = −P B

 (.) () ()fn M P fn M fn P= ∪

 (.) () ()fn M P fn M fn P〈 〉 = ∪

 ((:).) () { }fn n P fn P nμ = −

or bound:

()bn n = ∅ ()bn = ∅0

() ()bn in M bn M= (|) () ()bn P P bn P bn P′ ′= ∪

() ()bn out M bn M= (!) ()bn P bn P=

() ()bn move M bn M= ([]) () ()bn M P bn M bn P= ∪

(.) () ()bn M M bn M bn M′ ′= ∪ ((: [])) () { }bn n P bn P nν = ∪P B

 (.) () ()bn M P bn M bn P= ∪

 (.) () ()bn M P bn M bn P〈 〉 = ∪

 ((:).) () { }bn n P bn P nμ = ∪

We write { }P n M← for a substitution of the capability M for each free
occurrences of the name n in the term P . Then similarly for { }M n M← .

Structural congruence is standard for mobile ambients:

• equivalence
P P≡ (SRefl)
P Q Q P≡ ⇒ ≡ (SSymm)

,P Q Q R P R≡ ≡ ⇒ ≡ (STrans)

M. Tomášek Language for Distributed System of Mobile Agents

 – 120 –

• congruence
| |P Q P R Q R≡ ⇒ ≡ (SPar)

! !P Q P Q≡ ⇒ ≡ (SRepl)
[] []P Q M P M Q≡ ⇒ ≡ (SAmb)

(: []) (: [])P Q n P n Qν ν≡ ⇒ ≡P PB B (SRes)
. .P Q M P M Q≡ ⇒ ≡ (SAct)

. .P Q M P M Q≡ ⇒ 〈 〉 ≡ 〈 〉 (SCommOut)
(:). (:).P Q n P n Qμ μ≡ ⇒ ≡ (SCommIn)

• sequential composition (associativity)
(.). . .M M P M M P′ ′≡ (SPath)

• parallel composition (associativity, commutativity and inactivity)
| |P Q Q P≡ (SParComm)

(|) | | (|)P Q R P Q R≡ (SParAssoc)
|P P≡0 (SParNull)

• replication
! | !P P P≡ (SReplPar)
! ≡0 0 (SReplNull)

• restriction and scope extrusion
(: [])(: []) (: [])(: [])n m n m P m n Pν ν ν ν′ ′≠ ⇒ ≡P P P PB B B B (SResRes)

() (: []) | (: [])(|)n fn Q n P Q n P Qν ν∉ ⇒ ≡P PB B (SResPar)
(: []) [] [(: [])]n m n m P m n Pν ν≠ ⇒ ≡P PB B (SResAmb)

(: [])nν ≡P 0 0B (SResNull)

• garbage collection
(: []) []n nν ≡P 0 0B (SAmbNull)

In addition, we identify processes up to renaming of bound names (α-conversion):
(: []) (: []) { } ()n P m P n m m fn Pν ν= ← ∉P PB B (SAlphaRes)
(:) (:) { } ()n P m P n m m fn Pμ μ= ← ∉ (SAlphaCommIn)

The reduction rules are those for mobile ambients, with the obvious difference
consisting in the synchronous output and the missing open operation, and with the
new rule for the move operation similar to the “migrate” instructions for strong
code mobility in software agents:
• basic reductions

[. |] | [] [[|] |]n in m P Q m R m n P Q R→ (RIn)
[[. |] |] [|] | []m n out m P Q R n P Q m R→ (ROut)
[. |] | [] [] | [|]n move m P Q m R n Q m P R→ (RMove)

(:). | . { } |n P M Q P n M Qμ 〈 〉 → ← (RComm)

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 121 –

• structural reductions
| |P Q P R Q R→ ⇒ → (RPar)

[] []P Q n P n Q→ ⇒ → (RAmb)
(: []) (: [])P Q n P n Qν ν→ ⇒ →P PB B (RRes)

, ,P P P Q Q Q P Q′ ′ ′ ′≡ → ≡ ⇒ → (RStruct)

3 Type System with Behavioral Scheme

The restriction of the mobility operations is defined by types applying a
behavioral scheme. The scheme allows for setting up the access rights for
traveling of threads and ambients in the ambient hierarchy space of the system.

We define types where we present communication types and message types:
::κ = communication type

 | ⊥ no communication
 | μ communication of messages of type μ

::μ = message type
 | []P B process with behavioral scheme B
 | []′O B B operation which changes behavioral schemeB to ′B

The behavioral scheme is the structure (, , ,)Reside Pass Moveκ=B which contains
four components:

• κ is the communication type of the ambient’s threads.

• Reside is the set of behavioral schemes of other ambients where the ambient
can stay.

• Pass is the set of behavioral schemes of other ambients that the ambient can
go through, it must be Pass Reside⊆ .

• Move is the set of behavioral schemes of other ambients where the ambient
can move its containing thread.

3.1 Typing Rules

The type environment is defined as a set 1 1{ : , , : }l ln nμ μΓ = … where each :i in μ
assigns a unique type iμ to a name in .

The domain of the type environment is defined by:

()Dom ∅ =∅ (, :) () { }Dom n Dom nμΓ = Γ ∪

M. Tomášek Language for Distributed System of Mobile Agents

 – 122 –

We define two type formulas for our ambient calculus:

:M μΓ : []PΓ P B

Typing rules are used to derive type formulas of ambient processes:
:

:
n

n
μ

μ
∈Γ

Γ
 (TName)

: [] ()
: []

M Pass
in M

′Γ ∈
′ ′Γ

P
O

B B B
B B

 (TIn)

: [] () () ()
: []

M Pass Reside Reside
out M

′ ′Γ ∈ ⊆
′ ′Γ

P
O

B B B B B
B B

 (TOut)

: [] ()
: []

M Move
move M

′Γ ∈
′Γ

P
O

B B B
B B

 (TMove)

: [] : []
. : []

M M
M M

′′ ′ ′ ′′Γ Γ
′ ′Γ

O O
O

B B B B
B B

 (TPath)

: []Γ 0 P B
 (TNull)

: [] : []
| : []

P P
P P

′Γ Γ
′Γ

P P
P

B B
B

 (TPar)

: []
! : []
P
P

Γ
Γ

P
P
B
B

 (TRepl)

: [] : [] ()
[] : []

P M Reside
M P

′Γ Γ ∈
′Γ

P P
P

B B B B
B

 (TAmb)

, : [] : []
(: []) : []
n P

n Pν
′Γ

′Γ
P P

P P
B B
B B

 (TRes)

: [] : []
. : []

M P
M P

′Γ Γ
′Γ

O P
P

B B B
B

 (TAct)

: [] : ()
. : []

P M
M P

μ κ μΓ Γ =
Γ 〈 〉

P
P

B B
B

 (TCommOut)

, : : [] ()
(:). : []

n P
n P

μ κ μ
μ

Γ =
Γ

P
P

B B
B

 (TCommIn)

We say the process is well-typed when we are able to derive a type formula for it
using our typing rules. Well-typed processes respect the communication and
mobility restrictions defined in all behavioral schemes of the system. It means
such a process has the correct behavior.

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 123 –

4 Discussing Mobility of Software Agents

The new operation move with its semantic rule (RMove)

[. |] | [] [] | [|]n move m P Q m R n Q m P R→

allows us to eliminate remote communication which is usually quite difficult to
express. By moving threads among ambient we can move their communication
part and return back the results of the communication. For example, the
elimination of the remote communication between ambient helps us to encode π-
calculus in mobile ambient.

Another interesting aspect of the move operation is the possibility to express
objective mobility. Distinction between subjective mobility and objective mobility
is very important. Objective mobility means the migration of the process term
managed externally. When we want to move an ambient from one place to
another, we can use the operation move independently of the inner ambient
operations. On the other hand subjective mobility is the migration of process term
which is managed itself. Using in and out primitives is the expression of
subjective mobility of the ambient. In the theory of mobile ambients we
sometimes define objective mobility [7] by primitive . []go N M P with its
semantic rules

(.). [] | [] [. [] |]
[(.). [] |] . [] | []

go in m N n P m Q m go N n P Q
m go out m N n P Q go N n P m Q

→
→

The go operation allows similar movement of the ambient as in and out where
only one ambient boundary is crossed. The move operation moves process terms
between neighbor ambients, which means crossing two ambient boundaries. This
is a possible disadvantage, but it is in the interest of the dangerous open primitive
avoidance. We decided to adopt this operation because of its importance in the
context of software mobility and for its background in the Dπ [8] variant of π-
calculus. Another argument is the simplicity and understandability of the type
system.

The meaning of objective and subjective mobility we can show in the example of
a server for software agents. The mobility of agents is the autonomous process and
no external impact is needed. The migration is expressed by a travel plan as a
sequence of in and out operations

1 2 2 1 1 2 1 1 2[...] | [[. .] | ...] [...] | [...] | [.] [[] | ...] | [...]s s a out s in s P s s a in s P s a P s→ →

where 1s and 2s represent two instances of the server and ambient a represents a
mobile agent moving between them. In some cases the server can “banish” the
agent for various reasons (abusing the system, lack of resources, system overload).

M. Tomášek Language for Distributed System of Mobile Agents

 – 124 –

This aspect we can express by objective mobility where the server itself moves the
agent to another place

1 2 1 1 2[...] | [. [] | ...] [[] | ...] | [...]s s move s a P s a P s→

Table 1
Abstract syntax of the language of mobile agents

::τ = Agent type
 | []A Agent type without communication

 | []τA Agent type with communication type τ

::System = Distributed system of places

 | nothing Empty system

 | []place p Room Place p with inner Room

 | |System System Composition of places in the system

::Room = Inner of the place

 | empty Empty place

 | : []agent a Bodyτ Agent a of type τ with activity Body

 | |Room Room Compositions of agents in the place

::Body = Agent activity

 | null No activity

 | : [].new a Body Bodyτ′ ′
Creation of new agent a′ of type τ and activity
Body′ on the actual place

 | .go p Body′ Moving agent to place p′

 | (:).read m Bodyτ Reading message m of type τ from input

 | .write a m Body′〈 〉 Writing message m to agent a′ on the same place

5 Design of Language for Mobile Agents

Understanding the code mobility and mobility of software agents guide us to
define the natural semantics of the mobile applications in the distributed
computational environment. We define a language which expresses software
agents migration in the space of distributed places. The only operation of agents
we consider in this case is the agent communication.

The abstract syntax of the proposed language is in Table 1 together with the
informal description of the language constructions. The language semantics is

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 125 –

defined by the encoding to mobile ambient and can be found in Table 2. We can
see the encoding follows the dynamical hierarchy of agents and places, which is
an advantage of the applied calculus.

Table 2
Denotation semantics of the language of mobile agents

[] []⊥=A P B for (,{ , , },{ , },{ })System Room Room⊥ ⊥ ⊥ ⊥= ⊥B B B B B B B

[] []ττ =A P B for (,{ , , },{ , },{ })System Room Roomτ τ τ ττ=B B B B B B B

: []SystemSystem P B for (, , ,)System = ⊥ ∅ ∅ ∅B

: []p RoomRoom P B if : []Roomp P B for (,{ }, ,)Room System= ⊥ ∅ ∅B B

:aBody τ if :a τ

nothing = 0

[] []pplace p Room p Room= for : []Roomp P B

| |System System System System=

pnothing = 0

: [] (:) []p aagent a Body a a Bodyτ ν τ=

| |p p pRoom Room Room Room=

anull = 0

: []. (:) [.] |a a anew a Body Body a a out a Body Bodyτ ν τ ′′ ′ ′ ′ ′= for a a′ ≠
and :a τ

. . .a ago p Body out p in p Body′ ′=

(:) (:).a aread m m Bodyτ τ= for : []a τA

. . |a awrite a m Body move a m Body′ ′〈 〉 = 〈 〉 for :m τ , : []a τA and

: []a τ′ A

Agents define communication type τ in the form of []τA , which expresses that
the agent can communicate messages of type τ . A closer look shows us that the
agent can communicate only to another agent of the same communication type no
matter the direction of the communication. This is given by the possibility of the
communication thread movement defined in the Move set of the agent’s
behavioral scheme. We can think of a more general solution, but for better
understanding we use this limitation for one behavioral scheme. On the system
level there is no communication, so its behavioral scheme defines no
communication type. The same is for the distributed places.

Communication between agents takes place in the ambient of the agent accepting
the message. We consider only communication of agents located on the same

M. Tomášek Language for Distributed System of Mobile Agents

 – 126 –

place. Remote communication we can implement by e.g. complex information
about communication place and moving agents there. The message exchange is
asynchronous. Synchronous communication is more natural, but its expression is
more complex.

Mobility rules are given very simply and statically assuming the places are
immobile and agents are moved only through places. For simplicity and better
understandability, we consider only one general behavioral scheme for all
distributed places in the system. This does not allow us to restrict the movement
through the places, but of course we can consider also more complex movement
management. To keep the type system correct, we must allow moving agents
through agents on the same place, which results from the command new from
agent creation.

Conclusions

The usage of type system is limited by its very simplicity and it does not prevent
more restrictive properties from being checked at runtime. In our related work [9]
we proved the soundness theorem for the type system, we demonstrated the
system by showing how to model some common mobile code paradigms, we
demonstrated some typical mobile code applications and as an expressiveness test,
and we showed that well-known π-calculus of concurrency and mobility can be
encoded in our calculus in a natural way.

In this work we discussed mobility aspects of software agents and we identified
the objective and subjective mobility. Understanding the code mobility was
provided by our revised calculus of mobile ambient and types enhanced by
behavioral scheme. We were able to propose a very simple language for
distributed system of mobile agents. The agents’ encoding respects the way of
hierarchical distribution of ambients and naturally expresses mobility. The
simplicity of the language does not allow us to show more complex constructions,
e.g. remote communication and restriction of the movement.

References

[1] Cardelli, L., Gordon, A. D.: Mobile Ambients. Theoretical Computer
Science, Vol. 240, No. 1, 2000, pp. 177-213

[2] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part 1
– 2. Information and Computation, Vol. 100, No. 1, 1992, pp. 1-77

[3] Levi, F., Sangiorgi, D.: Controlling Interference in Ambients. Proceedings
of POPL’00, ACM Press, New York, 2000, pp. 352-364

[4] Bugliesi, M., Castagna, G.: Secure Safe Ambients. Proceedings of
POPL’01, ACM Press, New York, 2001, pp. 222-235

[5] Bugliesi, M., Castagna, G., Crafa, S.: Boxed Ambients. In B. Pierce (ed.):
TACS’01, LNCS 2215, Springer Verlag, 2001, pp. 38-63

Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

 – 127 –

[6] Fuggeta, A., Picco, G. P., Vigna, G.: Understanding Code Mobility. IEEE
Transactions on Software Engineering, Vol. 24, No. 5, May 1998, pp. 342-
361

[7] Cardelli, L., Ghelli, G., Gordon, A. D.: Mobility Types for Mobile
Ambients. Proceedings of the ICALP’99, LNCS 1644, Springer Verlag,
1999, pp. 230-239

[8] Hennessey, M., Riely, J.: Resource Access Control in Systems of Mobile
Agents. Technical Report 2/98, Computer Science Department, University
of Sussex, 1998

[9] Tomasek, M.: Expressing Dynamics of Mobile Programs. PhD thesis,
Technical university of Košice, 2004

