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Abstract: An application of fuzzy systems to nonlinear system adaptive control design is 
proposed in this paper. The fuzzy system is constructed to approximate the nonlinear 
system dynamics. Based on this fuzzy approximation suitable adaptive control laws and 
appropriate parameter update algorithms for nonlinear uncertain (or unknown) systems 
are developed to achieve H∞  tracking performance. It is shown that the effects of 

approximation errors and external disturbance can be attenuated to a specific attenuation 
level using the proposed adaptive fuzzy control scheme. The nonlinear gradient law 
guarantees the convergence of the training algorithm. 
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1 Introduction 

Fuzzy logic controllers are in general considered being applicable to plants that 
are mathematically poorly understood and where the experienced human operators 
are available [1]. In indirect adaptive fuzzy control, the fuzzy logic systems are 
used to model the plant. Then a controller is constructed assuming that the fuzzy 
logic system approximately represents the true plant. 

Feedback linearization techniques for nonlinear control system design have been 
developed in the last two decades [2], [3]. However, these techniques can only be 
applied to nonlinear systems whose parameters are known exactly. If the nonlinear 
system contains unknown or uncertain parameters then the feedback linearization 
is no longer utilizable. In this situation, the adaptive strategies are used to simplify 
the problem and to allow a suitable solution. At present, a number of adaptive 
control design techniques for nonlinear systems based on the feedback 
linearization can be found in literature [4], [5]. These approaches simplify the 
nonlinear systems by assuming either linearly or nonlinearly parametrized 
structures. However, these assumptions are not sufficient for many practical 
applications. Recently, the fuzzy systems have been employed successfully in the 
adaptive control design problems of nonlinear systems. According to the universal 
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approximation theorem [6], [7], many important adaptive fuzzy-based control 
schemes have been developed to incorporate the expert information directly and 
systematically and various stable performance criteria are guaranteed by 
theoretical analysis [6], [8]-[12]. 

In this paper we combine the characteristics of fuzzy systems, the technique of 
feedback linearization, the adaptive control scheme and the H∞  optimal control 
theory with aim to solve the tracking control design problem for nonlinear systems 
with bounded unknown or uncertain parameters and external disturbances. H∞  
optimal control theory is well known as an efficient tool for robust stabilization 
and disturbance rejection problems [13], [14]. 

More specifically, we propose the fuzzy adaptive algorithm equipped with a 
gradient projection law. The resulting controller performances can be improved by 
incorporating some linguistic rules describing the plant dynamic behavior. 

The paper is organized as follows. First, the problem formulation is presented in 
Section 2. In Section 3, the adaptive fuzzy control is proposed. Simulation results 
for the proposed control concept are shown in Section 4. Finally, the paper is 
concluded in Section 5. 

2 Problem Statement 

We consider the n-th order nonlinear dynamic single input single output (SISO) 
system with n 2≥  of the following form 

( ) ( )

1 2

n

1

x x

x f x g x u d
y x

=

= + +

=

 (1) 

or equivalently 

( ) ( )( ) ( )( )n n 1 n 1x f x, x, , x g x, x, , x u d

y x

− −= + +

=

… …
 (2) 

where [ ]T1 2 nx x , x , , x= …  represents the state vector, u is the control input, y 

and d denote the system output and the external disturbance, respectively. All 
elements of the state vector x  are assumed to be available and the external 
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disturbance d is assumed to be bounded but unknown or uncertain. At the begining 
( )f x  and ( )g x  are assumed to be smooth and ( )g x 0≠  for x  in certain 

controllability region n
cU R⊂ . Without loss of generality we suppose that 

( )g x 0> , but the analysis throughout this paper can be easily tailored to 

systems with ( )g x 0< . Differentiating the output y with respect to time for n 

times gives the following input/output form 

( ) ( ) ( )ny f x g x u d= + +  (3) 

Note that the above system has a relative degree of n. 

Remark 1. For more general nonlinear system 

( ) ( )
( )

z F z G z u d '

y H z

= + +

=
 (4) 

where nz R∈ , u, v R∈ , ( )F z , ( )G z  and ( )H z  are smooth functions, we 

say that the system has a relative degree of m if m is the smallest integer such that 
m 1

G FL L H 0− ≠ . 

We obtain [2] 

( )m m m 1 m 1
F G F F Gu d ' d '

m 1
k 1 m k
F Gu d ' d ' F

k 1

y L H L L Hu L L H

L L L H

− −
+ +

−
− −
+ +

=

= + +

+∑
 (5) 

where ( )FL ⋅ , and ( )GL ⋅  denote the Lie derivatives with respect to F and G, 

respectively. If we let 1y x= , then (5) can be rewritten as the input/output form 
of (3). 

If ( )f x  and ( )g x  are known, a nonlinear tracking control can be obtained. Let 

ry  be the desired continuous differentiable uniformly bounded trajectory and let 

re y y= −  (6) 

be the tracking error. Then employing the technique of feedback linearization [2] 
the following suitable control law can be derived to achieve the tracking control 
goal 
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( ) ( ) a
1u f x u

g x
= − + + ν⎡ ⎤⎣ ⎦  (7) 

where au  is an auxiliary control variable [13, optimal control] yet to be specified 
and 

( ) ( ) ( )( ) ( )n n 1 n 1
r 1 r n ry k y y k y y− −ν = + − + + −…  (8) 

Note that the coeficients 1 nk , , k…  are positive constants to be assigned such that 

the polynomial n n 1
1 ns k s k−+ + +…  is Hurwitz. As a result, the system error 

dynamic has the following input/output form 

( ) ( )n n 1
1 n ae k e k e u d−+ + + = +…  (9) 

which can be represented in space form as 

( )cc ae e b u d= + +Λ  (10) 

where 

c

n n 1 1

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
k k k−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Λ  (11) 

[ ]Tcb 0 0 1=  (12) 

( ) ( ) Tn 2 n 1e e e e− −⎡ ⎤= ⎣ ⎦  (13) 

The above mentioned design method is useful only if ( )f x  and ( )g x  are 

known exactly. If ( )f x  and ( )g x  are unknown, then adaptive strategies must 

be employed. Let us now discuss a fuzzy system based adaptive algorithm. 

Fist, we employ two fuzzy systems ( )ff x | θ  and ( )gg x | θ  [15] to 

approximate (or model) the nonlinear functions ( )f x  and ( )g x  of the system 

(1). 
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In this article is used the set of fuzzy systems with singleton fuzzifier, product 
inference, centroid defuzzifier, triangular antecendent membership function and 
singleton consequent membership function with n inputs of 

[ ]
iiii xxxxi kc,kcx +−∈  for n,,1i …=  and [ ]1,0u∈  as the normalized 

output. The generalized expresion of the class of the fuzzy controllers can be 
written as 

∑ ∑
= =

−−=
2

1i

2

1i

1i
n

1i
1ii

1 n

n1

n1
xxNu  (14) 

∏

∑ ∑

=

= =
⎥
⎦

⎤
⎢
⎣

⎡

= n

1i
x

n

2

1j

2

1j
jjjjjj

ii

i

1 n

n1n1n1

n1

k2

CKR
N  (15) 

( )
( )

( )
( )

1i

x
j

x

j
1i

x
j

x

j

jj

1

n

n

n

n
1

1

1

1

1

n1 c1k
1

c1k
1C

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

=  (16) 

( )[ ] ( )[ ]
n

n

n1

1

1n1 x
j

xx
j

xjj c1kc1kK −−−−=  (17) 

On the other hand given the coeficients of the explicit form 
n1 iiN  we can 

reconstruct the rule base from the generalized expression of the class of fuzzy 
systems [16] by using the following theorem. 

Theorem 1: For a class of FLS with singleton fuzzifier, product inference, 
centroid defuzzifier, triangular antecendent membership function and singleton 
consequent membership function, i.e. given the coefficients of the explicit form, 
i.e. 

n1 iiN , the control function can be expressed in terms of fuzzy rules as 

∑ ∑
= =

=
2

1i

2

1i
jjiijj

1 n

n1n1n1
DNR  (18) 

with 

( )[ ] ( )[ ] 1i

x
j

x

1i

x
j

xjj
n

n

n

n

1

1

1

1n1
k1ck1cD

−−
−+−+=  (19) 

Proof: The proof is found by directly expanding terms and comparing 
coefficients. For details, please refer [16]. 

Therefore, one can express an equation in the form of generalized multilinear 
equations, such as polynomials, exactly as a rule base of FLS. Theorem 1 is useful 
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in cases where the implementation of an FLS performs inference on a given fuzzy 
rule base but without any numerical computation capability. 

Now, we can express the fuzzy controller in the form of fuzzy IF-THEN rules. 

1) For the nonlinear-cancellation fuzzy controller of ( )f x  

RULE i: IF 1x  is 1x
1A  and ... and nx  is nx

1A , THEN f
f iu R=  

2) For the nonlinear-cancellation fuzzy controller of ( )g x  

RULE i: IF 1x  is 1x
1A  and ... and nx  is nx

1A , THEN g
g iu R=  

The generalized expression of the class of the fuzzy approximators for nonlinear 
term cancelation with input x can be written as controller for pole-placement 

1 n

1 n

1 n

2 2
i 1 i 1f

f i i 1 n
i 1 i 1

u N x x− −

= =

= ∑ ∑  (20) 

1 n

1 n

1 n

2 2
i 1 i 1g

g i i 1 n
i 1 i 1

u N x x− −

= =

= ∑ ∑  (21) 

So terms for ( )ff x | θ  and ( )gg x | θ  can be written as 

( ) T
f f xf x | θ = θ ω  (22) 

with ( )b c

T T T
f ff k , kθ =  

and ( )T T T
cx x , xω =  

and 

( ) T
g g xg x | θ = θ ω  (23) 

with ( )b c

T T T
g gg k ,kθ =  

and ( )T T T
cx x , xω =  

with 
b

T f f
f 1 nk k , , k⎡ ⎤= ⎣ ⎦  and 

b

T g g
g 1 nk k , , k⎡ ⎤= ⎣ ⎦  

where 
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f f
1 211 111
f f
2 121 111
f f
n 1 111 121
f f
n 111 112

k 2N

k 2N

k 2N

k 2N
−

=

=

=

=

…

…

…

…

  

g g
1 211 111
g g
2 121 111
g g
n 1 111 121
g g
n 111 112

k 2N

k 2N

k 2N

k 2N
−

=

=

=

=

…

…

…

…

 

The composite state vector cx  and the associated parameter vectors 
cfk , 

cgk  are 

defined as 

( )T
c 1 2 n 1 2 n 1 n 1 nx rx x x , rx x x , , x x ,1− −= … …  (24) 

( )c c c

T f f f f
f n 1 n 2 n n 1 n nk k ,k , , k , k+ + + − +=  (25) 

( )c c c

T g g g g
g n 1 n 2 n n 1 n nk k ,k , , k , k+ + + − +=  (26) 

where 

c

c

f f
n 1 222 222
f f
n 2 222 221
f f
n n 1 111 122

f f
n n 111 111

k 2N

k 2N

k 2N

k 2N

+

+

+ −

+

=

=

=

=

…

…

…

…

  
c

c

g g
n 1 222 222
g g
n 2 222 221
g g
n n 1 111 122

g g
n n 111 111

k 2N

k 2N

k 2N

k 2N

+

+

+ −

+

=

=

=

=

…

…

…

…

 

with ( )n 1
cn 2 n 1+= − + . 

Let 

( )
f

*
f fx

arg min max f x,
θ

θ = θ  (27) 

( )
g

*
g gx

arg min max g x,
θ

θ = θ  (28) 

be the best parameter approximation of fθ  and gθ , respectively, and let 

*
f ff

φ = θ −θ , *
g gg

φ = θ −θ  (29) 

be the corresponding parameter estimation errors. Then using the certainty 
equivalence principle [5] the following fuzzy adaptive control law is derived 
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( ) ( )f a
g

1u f x, u
g x,

⎡ ⎤= − θ + + ν⎣ ⎦θ
 (30) 

Applying this control law to the system (1) yields 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

n

g g

f g a

y f x g x u d

f x g x u g x, u g x, u d

f x f x, g x g x, u u d

= + +

= + − θ + θ +

= − θ + − θ + + ν +

 (31) 

By means of the best approximation (using the universal approximation theorem 
[6], [7], [17]), the above equation can be rewritten as 

( ) ( )( )
( ) ( )( ) [ ]

*
c f fc

*
g g c a

e e b f x f x

g x g x u b u w

⎡= + θ − θ⎢⎣
⎤+ θ − θ + +⎥⎦

Λ
 (32) 

where 

( ) ( )( ) ( ) ( )( )* *
f gw f x f x g x g x u d= − θ + − θ +  (33) 

In order to track the desired signal ry , the fuzzy systems ( )ff x | θ  and 

( )gg x | θ  should be trained to achieve ( )*
ff x | θ  and ( )*

gg x | θ  respectively, 

so that the term 

( ) ( )( ) ( ) ( )( )* *
f f g gf x f x g x g x u 0⎡ ⎤θ − θ + θ − θ =⎢ ⎥⎣ ⎦

 (34) 

The effect of w, denoting the sum of the approximation errors and external 
disturbances in the above error dynamics equation, is crucial and will be 
attenuated by au . Fortunately, the H∞  control design approach [12] can be 
efficiently employed to attenuate the effect of w in the error dynamic system (32). 
Our solution utilizes the concept of H∞  tracking performance to deal with the 
robust adaptive tracking control problem. Then, the problem we are investigating 
becomes that of finding an adaptive scheme for au , fθ  and gθ  to achieve the 

following H∞  tracking performance [12], [18] 
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( ) ( ) ( ) ( )

( ) ( )

T T T T

f f0
f

TT 2 T
g g 0

g

1e edt e 0 e 0 0 0

1 0 0 w wdt

≤ + φ φ
γ

+ φ φ +ρ
γ

∫

∫

Q P
 (35) 

for appropriate positive definite weighting matrices T=Q Q , T=P P , positive 
weighting factors fγ  and gγ , prescribed attenuation level ρ  and time T. In the 

inequality (35), T is the terminal time of the control effort and can take any finite 
or infinite value. The initial errors ( )e 0 , ( )f

0φ  and ( )g
0φ  are considered to 

be free of the disturbances which can influence the tracking error e . The physical 

meaning of (35) is that the effect of w on the tracking error e  is attenuated by a 
factor ρ  from an energy point of view. In general ρ  is a small value less then 1. 

Remark 2. From the above analysis, we note the following 

o In the case of ρ→∞ , (35) becomes the 2H  tracking performance 
without consideration of disturbance attenuation [12]. 

o The weighting factors fγ  and gγ  are called the adaptive gains of fθ  and 

gθ  update algorithms, respectively. It can be seen from (35), that the larger 

the value of fγ , the smaller the effect of ( )f
0φ  on the tracking error e . 

Similar argument for ( )g
0φ  can also be made. However, it is easy to see 

that large values of fγ  or gγ  will cause fθ  and gθ  to change rapidly. 

This may be harmful to the system. 

3 Adaptive Fuzzy Control 

The following theorem gives the solution of the adaptive H∞  tracking problem 
for the SISO nonlinear system (1). 

Theorem 2. Consider the nonlinear system (1) with unknown or uncertain ( )f x  

and ( )g x . If the following adaptive fuzzy control law is adopted 

( ) ( )f a
g

1u f x u
g x

⎡ ⎤= − θ + + ν⎣ ⎦θ
 (36) 
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with 

T
ca

1u b e
r

= − P  (37) 

T
f c xf e bθ = γ ωP  (38) 

T
g c xg e b uθ = γ ωP  (39) 

where the signal ν  is given by (8), r is a positive scalar, the fuzzy systems 

( )ff x | θ  and ( )gg x | θ  are defined by (22), (23) and the positive definite 

matrix T=P P  is the solution of the Riccati-like equation 

T TT
c c c cc c 2

2 1b b b b 0
r

+ + − + =
ρ

Λ P PΛ Q P P P P  (40) 

then the H∞  tracking performance in (35) is achieved for a prescribed attenuation 
level ρ . 

Proof. Consider the Lyapunov function in the form 

T T T

f f g g
f g

1 1 1V e e
2 2 2

= + φ φ + φ φ
γ γ

P  (41) 

Taking the time derivative of V along the trajectory of the error dynamic (8), we 
have 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

TT T T

f f f f
f f

T T

g g g g
g g

T T T TT T
c cc c a a

T T
* * T
f f g g c

T * *
c f f g g

T T
c c

1 1 1 1V e e e e
2 2 2 2

1 1
2 2

1 1 1 1e e e e e b u u b e
2 2 2 2
1 f x f x g x g x u b e
2
1 e b f x f x g x g x u
2
1 1e b w w b
2 2

= + + φ φ + φ φ
γ γ

+ φ φ + φ φ
γ γ

= + + +

⎡ ⎤+ θ − θ + θ − θ⎢ ⎥⎣ ⎦

⎡ ⎤+ θ − θ + θ − θ⎢ ⎥⎣ ⎦

+ +

P P

Λ P PΛ P P

P

P

P
TT T

f f f f
f f

T T

g g g g
g g

1 1e
2 2

1 1
2 2

+ φ φ + φ φ
γ γ

+ φ φ + φ φ
γ γ

P

 (42) 
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Using (22), (23), (28), (39) and the fact that 

ff
φ = θ , gg

φ = θ  (43) 

we obtain 

T TT
c cc c

T T T
x x cf g

T T T TT
c cf f g g

f g

1 2V e b b e
2 r

u b e

1 1 1 1w b e e b w
2 2

⎡ ⎤= + −⎢ ⎥⎣ ⎦
⎡ ⎤− φ ω + φ ω⎣ ⎦

+ φ φ + φ φ + +
γ γ

Λ P PΛ P P

P

P P

 (44) 

Introducing (40) into (44) implies 

T T T
c c2

T T
x c ff

f

T T
x c gg

g

T TT
c c

1 1V e e e b b e
2 2

1b e

1u b e

1 1w b e e b w
2 2

= − −
ρ

⎛ ⎞
−φ ω − θ⎜ ⎟γ⎝ ⎠

⎛ ⎞
−φ ω − θ⎜ ⎟⎜ ⎟γ⎝ ⎠

+ +

Q P P

P

P

P P

 (45) 

Using the adaptation laws (38) and (39), equation (45) can be rewritten into the 
form 

T
T T 2 T
c c

T

T 2 T

1 1 1 1V b e w b e w w w
2 2

1 e e
2

1 1e e w w
2 2

⎛ ⎞ ⎛ ⎞
= − −ρ −ρ + ρ⎜ ⎟ ⎜ ⎟ρ ρ⎝ ⎠ ⎝ ⎠

−

≤ − + ρ

P P

Q

Q

 (46) 

Integrating the above equation from 0 to T yields 

( ) ( )
T TT 2 T

0 0

1 1V T V 0 e edt w wdt
2 2

− ≤ − + ρ∫ ∫Q  (47) 
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Since ( )V T 0≥  inequality (47) implies that 

( ) ( ) ( ) ( ) ( ) ( )
T TT T T T 2 T

f f g g0 0
f g

1 1e edt e 0 e 0 0 0 0 0 w wdt≤ + φ φ + φ φ +ρ
γ γ∫ ∫Q P   

 (48) 

This is the H∞  tracking performance of (35). 

Q.E.D. 

Remark 3. If w is bounded, then the H∞  tracking performance will be improved 
as the prescribed attenuation level ρ  is decreased. 

Remark 4. The Riccati-like equation (40) can be rewritten into the form 

TT
c cc c 2

1 2b b 0
r

⎛ ⎞
+ + − + =⎜ ⎟ρ⎝ ⎠

PΛ Λ P P P Q  (49) 

As it follows from Theorem 1, the sufficient condition for the H∞  tracking 
performance existence for the nonlinear system with adaptive fuzzy control law 
(37)-(39) is that the solution P of (40) must be positive definite and symmetric. It 
can be shown that in order to achieve this requirement the following condition 
must be satisfied [12] 

22 rρ ≥  (50) 

i.e., if the inequality (50) is satisfied, then for the nonlinear system (1) the H∞  
tracking performance with the prescribed attenuation level ρ  can always be 
achieved via the adaptive fuzzy control (37)-(39). In general, as ρ  is decreased r 
must be decreased in order to satisfy the inequality (50). However, (37) implies 
that the control variable au  must be increased to attenuate w to the desired level 

ρ . Thus, there is a tradeoff between the H∞  performance and the control 
magnitude. 
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4 Simulation Example 

Example 1 

The above described adaptive fuzzy control algorithm will now be evaluated using 
the inverted pendulum system depicted in Fig. 1. 

l 

1x=θ

 
Figure 1 

The inverted pendulum system 

Let θ=1x  and θ=2x . The dynamic equation of the inverted pendulum is 
given by [6] 

( ) ( )

( )

( )

( )

1

c

c

1
2

c

1

c

1
2
c

11
2
2

1

2

21

xy

du

mm
xcosm

3
4l

mm
xcos

mm
xcosm

3
4l

mm
xsinxcosmlxxsing

x

xx

=

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

+
−

=

=

 (51) 

where g is the acceleration due to gravity, cm  denotes the mass of the cart, m is 

the mass of the pole, l is the half-length of the pole, the force cu  represents the 
control signal and d is the external disturbance. In simulations following 
parameter values are used: Kg1mc = , Kg1.0m =  and m5.0l = . The 
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reference signal is assumed to be ( ) ( ) ( )tsin30/tyr π=  and an external 

disturbance ( ) ( )tsin1.0td = . 

If we require 

6
x π
≤ , 180u ≤  (52) 

and substitute the functions sin(.) and cos(.) by their bounds, we can determine the 
bounds 

( ) 2
221

M x366.078.15x,xf +=  (53) 

( ) 46.1x,xg 21
M = , ( ) 12.1x,xg 21m =  (54) 

2k1 = , 1k 2 =  and ( )diag 10,10=Q  are set. In order to simplify further 

calculations 22r ρ=  is chosen. Then the algebraic Riccati equation solution is 

15 5
5 5

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

P  and ( )min 2.93λ =P . Five Gaussian membership functions for 

both 1x  and 2x  (i=1,2) are selected to cover the whole universe of discourse 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

π−
−=μ

2
i

iF 24
6x

expx1
i

 (55) 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π−

−=μ
2

i
iF 24

12x
expx2

i
 (56) 

( )
⎟
⎟

⎠
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⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

−=μ
2

i
iF 24

x
expx3

i
 (57) 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
π+

−=μ
2

i
iF 24

12x
expx4

i
 (58) 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

π+
−=μ

2
i

iF 24
6x

expx5
i

 (59) 
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Using the method of trial and errors 50f =γ  and 1g =γ  are chosen. The 

pendulum initial position is chosen as far as possible ( )( )10 x 12θ = = π  to 

emphasize the efficiency of our algorithm. 

Two cases have been considered in order to show the influence of the linguistic 
rules incorporation into the control law: 

Case one: the initial values of fθ  and gθ  are chosen arbitrarily. 

Case two: the initial values of fθ  and gθ  are deduced from the fuzzy rules 

describing the system dynamic behavior. For example, if we consider the unforced 
system, i.e. 0u c = , the acceleration is equal to ( )21 x,xf . So intuitively we can 
state: 

“The bigger is 1x , the larger is ( )21 x,xf ”. 

Transforming this fuzzy information into a fuzzy rule we obtain 
( )1
fR : IF  1x  is  5

1F  and  2x  is  5
2F , THEN  ( )21 x,xf  is “Positive Big” 

where “Positive Big” is a fuzzy set whose membership function is ( )iF
xl

i
μ  given 

by (55)-(59). The acceleration is proportional to the gravity, i.e. 
( ) ( )121 xsinx,xf α≅ , where α  is a constant. As ( )21 x,xf  achieves its 

maximum at 2x1 π= , using (53) we obtain 16≅α . The resulting set of 25 

fuzzy rules characterizing ( )21 x,xf  is given in Tab. 1. 

Table 1 
Linguistic rules for ( )21 x,xf  

( )21 x,xf  1x  

 1
1F  2

1F  3
1F  4

1F  5
1F  

 
6
π

−  
12
π

−  0 
12
π  

6
π  

 1
2F  

6
π

−  -8 -4 0 4 8 

 2
2F  

12
π

−  -8 -4 0 4 8 

2x
 

3
2F  0 -8 -4 0 4 8 

 4
2F  

12
π  -8 -4 0 4 8 

 5
2F  

6
π  -8 -4 0 4 8 
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Now the following observation is used to determine the fuzzy rules for 
( )21 x,xg : 

“The smaller is 1x , the larger is ( )21 x,xg ”. 

Similarly to the case of ( )21 x,xf  and based on the bounds (53)-(54) this 
observation can be quantified into the 25 fuzzy rules summarized in Tab. 2. 

Table 2 
Linguistic rules for ( )21 x,xg  

( )21 x,xg  1x  

 1
1F  2

1F  3
1F  4

1F  5
1F  

 

6
π

−  
12
π

−  0 

12
π  

6
π  

 1
2F  

6
π

−  1.26 1.36 1.46 1.36 1.26 

 2
2F  

12
π

−  1.26 1.36 1.46 1.36 1.26 

2x  3
2F  0 1.26 1.36 1.46 1.36 1.26 

 4
2F  

12
π  

1.26 1.36 1.46 1.36 1.26 

 5
2F  

6
π  

1.26 1.36 1.46 1.36 1.26 

To obtain the same tracking performances the attenuation level ρ  is equal to 0.2 
in the first case and to 0.8 in the second one. 

The tracking performance of both cases for a sinusoidal trajectory is illustrated in 
Fig. 2. 
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Figure 2 

The state 1x  in case 1(dashed line), in case 2 (dotted line) and desired value 

( )tyr  (solid line) for ( ) ( )T0,120x π=  

Example 2 

In this example, we apply the adaptive fuzzy controller to the system 

0u5.0y7.1y
y25.0

1y ''' =−+
+

+  (60) 

Define six fuzzy sets over interval <-10, 10> with labels N3, N2, N1, P1, P2, P3. 
The membership functions are 

( ) ( )2x53N e1
1x ++

=μ  (61) 

( )
( )25.1x2N

e
1x
+

=μ  (62) 

( )
( )25.0x1N

e
1x
+

=μ  (63) 
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( )
( )25.0x1P

e
1x
−

=μ  (64) 

( )
( )25.1x2P

e
1x
−

=μ  (65) 

( ) ( )2x53P e1
1x −−+

=μ  (66) 

The reference model is assumed to be 

( )
1s2s

1sM 2 ++
=  (67) 

and the reference signal is the series of jumps with variant magnitude. 

We choose 
50 30
30 20
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P , 2k1 = , 1k 2 = , and ( )min 1.52λ =P . To satisfy 

the constraint related to x  we choose 0.01ρ = . 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2[-]

[s]
 

Figure 3 
The state 1x (dashed line), its desired reference model value ( )tym  (dotted solid line) and reference 

signal (solid line) 
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At 75th second of simulation the system (60) was switched to another system 

( )
0u5yy7.1

y25.0
1y5y '

2
''''' =−+⎥

⎦

⎤
⎢
⎣

⎡
−

+
++  (68) 

All initial states have been set to zero ( ) ( ) ( ) ( ) 00y0y0y0y '''''' ==== . 

As it can be seen from Fig. 3, the simulation results confirm good adaptation 
capability of the proposed control system. The system dynamic changes are in 
particular manifested by changes of control input signal (Fig. 4). 

0 20 40 60 80 100 120
-1

0

1

2

3

4

5

6[-]

[s]
 

Figure 4 
Control signal 

Conclusions 

In this paper the adaptive fuzzy controller has been proposed for the class of 
nonlinear systems subject to large uncertainties or to unknown variations in the 
parameters and the structure of the plant. 

The proposed adaptive control scheme has involved both fuzzy systems and ∞H  
control. The adaptive fuzzy systems can be considered as a rough tuning control 
for approximation of the nonlinear system and the ∞H  control can be considered 
as a fine-tuning control used to filter the approximation errors and external 
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disturbances. Therefore, the proposed adaptive algorithm will be useful for the 
unknown (or uncertain) nonlinear system control design. The simulation results 
show that approximation errors and external disturbances can be successfully 
attenuated using the proposed control design method within a desired attenuation 
level, i.e. ∞H  tracking performance is achieved. 

Further work is under investigation to apply the proposed robust adaptive 
algorithm to multi input multi output (MIMO) systems. 
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