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Abstract: The paper deals with a shaft sensor-less field oriented control structure for an 
induction motor based on neural network estimators. The first part presents the theoretical 
knowledge. The second part presents the simulation and results of designing neural 
estimators for observing the magnetic flux and the motor angular speed for induction motor 
field oriented control in MATLAB-Simulink. Controllers for simulation of shaft sensor-less 
field oriented control have been designed by state space method. An achieved simulation 
result of the neural angular speed estimator has been verified by system of AC converter – 
induction motor by Real-Time system. 
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1 Introduction 
Motors play important roles in industrial production and in many other 
applications. In their early days, DC motors had the advantage of precise speed 
control when utilized for the purpose of accurate driving. However, DC motors 
have the disadvantage of brush erosion, maintenance requirements, environmental 
effects, complex structures and power limits. On the other hand, induction motors 
are robust, small in size, low in cost, and almost maintenance-free. 

Hasse [9] and Blaschke [10] developed a field oriented control theory to simplify 
the structure of IM speed control used to drive the DC motor. In recent years, the 
field oriented control theory has become more feasible due to progress in the 
development of electronics techniques and high-speed microprocessors. Nonlinear 
control problems can often be solved if full state information is available; in the 
IM case, the rotor states are immeasurable and often it is too costly to monitor the 
angular speed of the rotor. 

In most applications, speed sensors are necessary in the speed control loop. On the 
other hand, there are applications where lower performance is required, cost 
reduction and high reliability are necessary, or a hostile environment does not 
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allow for using speed sensors. In these fields, speed sensor-less IM control can be 
usefully applied. Many different solutions for the estimation of states variables or 
model parameters have been proposed recently, for example, estimators utilizing 
motor construction properties, estimators based on the drive dynamic model or 
estimators based on artificial intelligence [7, 8, 13, 15, 16]. 

Sensor-less controllers have been proposed which depend on adaptive control and 
observer theory, on optimal observer design by applying Kalman filter theory [11, 
12], on sliding mode control [2, 3], and on using artificial intelligence methods [1, 
4, 5, 6, 14]. 

At present, requirements on the dynamic precision are not too strict and virtual or 
soft sensors are alternatively successfully utilized. Estimators based on artificial 
intelligence are divided into the following groups: 

• systems based on the fuzzy logic, 

• systems based on neural networks, 

• systems based on hybrid systems, 

• systems based on evolutionary algorithms (genetic algorithms). 

2 Simulation Design of a Neural Estimator for Field 
Oriented Control of Induction Motor 

The neural modelling can perform estimation of the induction motor angular speed 
or of other non-measurable variables on the neural networks base. 

Nowadays, there are field oriented controlled drives based on different solutions 
and performances which are commonly used in industry. With field-oriented 
techniques, the decoupling of flux and torque control commands of the IM is 
guaranteed, and the induction motor can be controlled linearly, like a separately 
excited DC motor. The DC motor like performance can be obtained by preserving 
a fixed and orthogonal orientation between the field and armature fields in the 
induction motor by orientation of the stator current with respect to the rotor flux in 
order to attain independently controlled flux and torque. Using the field oriented 
control principle, the stator current component id1 is aligned in the direction of the 
rotor flux vector and the stator current component iq1 is aligned in the direction 
perpendicular to it. The rotor flux orientation in the squirrel-cage rotor IM cannot 
be directly measured, but it can be obtained from terminal variables. 

After using transformation of coordinates d, q to the rotating system x-y, the 
electric torque is proportional to the i1y component and the relation between the 
rotor flux and i1x component is given by the first order linear transfer function with 
T2= L2/R2 time constant. 
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From this fact and for the considered flux control, the stator current and voltage 
components were chosen as input signals for the reconstruction of the induction 
motor speed. The developed estimators were trained according to selected training 
patterns from the direct field oriented control of the induction motor. Block 
diagram of the control scheme is presented in Figure 1. 

 
Figure 1 

Basic field oriented control scheme 

2.1 Induction Motor FOC Simulation Design 
Field oriented control simulation design had been made for induction motor with 
the following parameters: Pn=0,75 kW; Un= 220V/380V; In= 3,8 A/2,2 A; nn= 
1380 rpm; p=2; s=0,08; J=5,4.10-3 kgm2 

In the design of state control by method of the poles determine for two input 
variables and one output based on the following equations: 
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Define the state variables: i2m=x1; i1x=x2; ω=x3; i1y=x4; mz=z; u1=u1x/KT; 
u2=u1y/KT 

Then, written can be the state equation for induction motor: 
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The constants and functions used in the state equation (6): 
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Nonlinear function f2(x), f4(x) in the control scheme shown in Fig. 2 compensating 
for introduction of control u, so as to simplify the state equation: 
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The characteristic polynomial of system ( )λP : 
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For current controller select the damping d=0.85, regulation time tr=0.05s and 
determine the desired characteristic polynomial ( )SP : 

( ) 7354.1462 ++= ssPS  

By comparing the characteristic polynomial and the desired characteristic 
polynomial we obtain controller constants K2, K4 and r2, r4 where K2 =K4 and 
r2=r4. 

2.1.2 Superior Circuit of Magnetizing Current (Ri2m) 

( ) 1

21

2

2

1

1

2122122112

12

11

1

2

2

1

.
0
0
0

.

000
.1.

010
00

w

Kv
v
x
x

K
KdKrKrK

r
aa

v

v

x

x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−+−−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

•

•

•

 

21221211112 ... vdxrxrvw −−−= ; ( )1111 . xwKv −=
•

 

The characteristic polynomial of system ( )λP : 
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Select the damping d=0.85, regulation time tr=0.1s and determine the desired 
characteristic polynomial ( )SP : 

( ) 9079700.1620201793.214 234 ++++= ssssPS  

By comparing of the characteristic polynomial and the desired characteristic 
polynomial we obtain controller constants K1, r11, r12, d12. 

2.1.3 Superior Circuit of Speed (Rω) 
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The characteristic polynomial of system ( )λP : 
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Select the damping d=0.85, regulation time tr=0.1s and determine the desired 
characteristic polynomial ( )SP : 

( ) 9079700.1620201793.214 234 ++++= ssssPS  

By comparing of the characteristic polynomial and the desired characteristic 
polynomial obtained are controller constants K3, r33, r34, d34. 

Constants calculated for all circuits of controller are used by the field oriented 
control scheme shown in Figure 2. 

 
Figure 2 

Simulation field oriented control scheme 

2.2 Magnetising Current Neural Estimator 
If for vector control the x-th component of the stator current vector is considered 
as a basis of current-creating component, then the magnetising current i2m 
estimator will process current-creating component of the stator current. 

As mentioned above, the magnetising current i2m neural estimator bases its 
estimation of the current-creating component of stator current i1x. Dependence 
between currents i2m and i1x is linear, and hence the estimator can be made up of a 
feed-forward neural network without any hidden layer. For the activating function, 
the purelin linear function can be used. The input data vector consists of values of 
the stator current i1x in step (k) and step (k-1), respectively, and also the preceding 
value of magnetising current i2m in step (k-1). A basic diagram of such neural 
estimator is shown in Figure 3. 
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Figure 3 

Basic diagram of magnetising current i2m neural estimator 

Here, O stands for output values vector, I is the input data vector, and wi presents 
weights of individual connections of neurons. 
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Substituting the input matrix to equation (7), we will obtain the equation for the 
magnetising current neural estimator in the following form: 
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where current i2m(k) is  the output variable and the input variables are i1x(k), i1x(k-
1) and i2m(k-1). 

 

2.3 Speed Neural Estimator 
If for the basis of torque-creating component we establish the y-th component of 
the vector, then the speed estimator will estimate this torque creating component 
from the stator voltage and current. 

As was already mentioned above, the angular speed ω neural estimator bases its 
estimation on the torque component of stator voltage u1y and current i1y. The 
relation between the input and output quantities is not represented by a simple 
linear dependency, and this is the reason why for the estimation a cascade neural 
network with one hidden layer consisted of eight neurons will be used. As an 
activating function for the hidden layer used, there was the tansig nonlinear 
function and for the output layer used was a purelin linear function. The input data 
vector is represented by values of stator voltage u1y and stator current i1y in steps 
(k) and (k-1), as well as by value of magnetising current i2m in steps (k) and (k-1). 
Basic diagram of such a neural estimator is shown in Figure 4. 
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Figure 4 

Basic diagram of ω motor angular speed neural estimator 

In the figure, O is the output values vector, I presents a vector of input variables 
and wi, wj, wk are weights of individual connections of neurons. 
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Post substituting the input matrix to equation (9) the neural speed estimator can be 
described by the following equation: 
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where the output quantity is ω(k) angular speed value and where the input are 
values u1y(k), u1y(k-1), i1y(k), i1y(k-1), i2m(k) and i2m(k-1). 

3 Simulation Results 
In the following, we show the simulation results of sensor-less vector control of an 
induction motor when applying neural estimators of the speed and magnetising 
current, respectively. 

The principal diagram of the vector control with connected neural estimators of 
the magnetising current and speed is shown in Figure 5. 
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Figure 5 

Basic diagram of vector control with neural estimators 

Simulation, design and training of neural estimators were performed for the 
induction motor with parameters: Pn=0,75 kW; Un= 220V/380V; In= 3,8 A/2,2 A; 
nn= 1380 rpm; p=2; s=0,08; J=5,4.10-3 kgm2 

 
Figure 6 

Comparison of the estimated versus actual magnetising current 

Figures 6 and 7 show a comparison of real and observed values of the magnetizing 
current and the angular speed. A dashed line shows there is the required angular 
speed value during starting, reversing and loading transients. In time of 2s the 
motor was loaded by the rated load torque. 
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Figure 7 

Comparison of the estimated versus actual speed of the IM 

The waveforms shown in Figures 6 and 7 are valid for the case of no feedback to 
control from the neural observers but led directly from the motor mathematical 
model. 

 
Figure 8 

Transients of desired versus real angular speed and the motor load torque 

Shown in Figure 8 is a simulated response of the induction motor angular speed 
(in solid line) at conditions identical with the previous one, shown in Figure 7. In 
this case, and the same as in any following ones, the feedback to control was 
introduced from neural observers of the magnetising current and angular speed. 
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3.1 Experimental Verification 
For verification of simulation results, an experimental Real-Time system based on 
RT-LAB system was used. The principal scheme of the whole system is show in 
Figure 9. 

The experimental system consists of the SIMOVERT MASTERDRIVES Vector 
Control and an induction motor with the same parameters as those of the motor 
used for simulation. Used as the load there was a dynamo with resistor and the 
base of this experimental system consists of Real-time system with NI PCI-6025E. 

 
Figure 9 

Principal scheme of Real-Time system 

3.2 Neural Estimation for Experimental Verification 
Regarding different ways of vector control in SIMOVERT MASTERDRIVES, a 
Vector Control (system in rotary coordinates d-q), used for design of speed neural 
estimator, was the input stator voltage in step (k) – u(k), in the step (k-1) - u(k-1) 
and value of current components d,q in step (k) – id(k), iq(k) and in step (k-1) - 
id(k-1), iq(k-1). For off-line training using the Levenberg-Marquardt algorithm 
126013 samples in aggregate were used. The output vector for training is 
represented by value of the rotor speed ȏ(k) in step (k). 

For the speed neural estimator we used a cascade neural network with one hidden 
layer having six input neurons and six hidden neurons. For the hidden layer 
activating function used was the tansig nonlinear function and for the output layer 
we used purelin linear function. Using them we obtained an equation for neural 
estimator of speed in the following form: 
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4 Experimental Results 
Presented in the following are the simulation results of sensor-less vector control 
of an induction motor when using neural estimators of speed. The principal 
diagram of vector control effected with the use of neural estimator of speed is 
shown in Figure 10. 

 
Figure 10 

Principal scheme of Real-Time system with neural estimator 

 
a) speed 

 
b) voltage    c) current id, iq 

Figure 11 
Time courses of desired versus actual rotor speed without load and relevant voltage and current 



Acta Polytechnica Hungarica Vol. 9, No. 4, 2012 

 – 43 – 

In Figures 11 and 12 are shown courses of desired (dash line) and actual rotor 
speeds of induction motor in the vector control using the scheme according to 
Figure 10. 

At time 1 second, the required value of rotor speed changed from 0% to 5% of 
nominal speed, at time 2 seconds, from 5% to 50%; at time 3 seconds, from 50% 
to 100% of nominal rotor speed and at time 4 seconds, the induction motor 
reversed. 

For verification we used an experimental real time system. The results obtained, 
illustrated by respective waveforms, validate the possibility of utilising artificial 
neural networks in sensor-less vector control of the induction motor. The drive 
features better adaptability and robustness in comparison with a drive without 
estimator. 

 
a) speed 

 
b) voltage    c) current id, iq 

Figure 12 
Time courses of desired versus actual rotor speed with load and relevant voltage and current 

Conclusions 

The paper is concerned with designing induction motor neural estimators. Based 
on easily measurable quantities, such as components of stator current and voltage, 
we designed estimators of the motor speed and magnetising current, utilizing feed-
forward and cascade neural networks. Both these networks were trained off-line 



P. Girovský et al. Shaft Sensor-less FOC Control of Induction Motor Using Neural Estimators 

 – 44 – 

using the Levenberg-Marquardt algorithm, which is a modification of the 
traditional back-propagation training algorithm. 

The results arrived at, illustrated by respective waveforms, validate the possibility 
of utilising artificial neural networks in the sensor-less vector controlling of an 
induction motor, while also taking advantage of their advantageous properties, 
such as adaptability and robustness. 

At the end of this paper presented are research results. For applied verification 
used was experimental Real-Time system. 
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