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Abstract: In the present study we investigate some general problems concerning the 
degeneracy of widely used topological indices (graph invariants), and we propose a novel 
family of molecular descriptors characterized by a decreased degeneracy level. A special 
feature of topological indices of novel type is that they take into account the degrees of 
vertices on increasing distances from a single vertex. According to the comparative tests 
performed on samples of isospectral graphs and of graphs of small diameter, the new 
descriptors are judged to be more efficient for discriminating between topological 
structures of molecular graphs than several traditional molecular indices. 
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1 Introduction 

A promising trend in theoretical and structural chemistry is the employment of 
graph invariants (topological indices) for the characterization of the combinatorial 
structure of carbon-based chemical compounds and the prediction of their 
physico-chemical properties. Topological invariant is a real number derived from 
the structure of a graph in such a way that it does not depend on the labeling of 
vertices. Hundreds topological invariants (indices) have been invented so far, and 
numerous reviews have been published on their applications in the QSAR/QSPR 
studies [1-10]. 
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One of the main difficulties when using topological indices for discriminating and 
prediction purposes is their degeneracy, i.e., the fact that two (or more) non-
isomorphic graphs have the same value of a topological index. The degeneracies 
are unavoidable; however, it makes sense to search for indices whose degeneracy 
is as low as reasonably possible [11, 12]. 

In the present study we investigate the discriminating potential (application limits) 
of traditional degree-based descriptors, especially, how to decrease the degeneracy 
by an appropriate modification or generalization of their structure, and finally we 
propose a set of novel topological invariants having improved discriminating 
potential. 

2 Definitions, Basic Notions 

All graphs considered in this study are finite, simple and connected graphs 
(without loops and multiple edges). We use the standard terminology; for the 
concepts not defined here, we refer the reader to any of standard graph theory 
monographs such as, e.g., [13] or [14]. For a connected graph G, V(G) and E(G) 
denote the set of vertices and edges, and )G(V  and )G(E  the numbers of 

vertices and edges, respectively. 

An edge of G connecting vertices u and v is denoted by (u,v). The diameter of a 
graph G (written by diam(G)) is defined as the greatest distance between any pairs 
of vertices in G. The degree of vertex u, denoted by d(u), is the number of edges 
incident to u. We denote by Δ=Δ(G) and δ=δ(G) the maximum and the minimum 
degrees, respectively, of vertices of G. A graph is called regular (R-regular), if all 
its vertices have the same degree R. To avoid trivialities we always assume that 

3)G(V ≥ , and d(u)≥1. A connected graph with maximum vertex degree at most 

4 is said to be a “chemical graph”. 

Consider the topological descriptor X(G) defined in the general form 

))G(Z),...,G(Z),G(Z(F)G(X J21=  

where F is a J-variable, non-negative real function, Z1(G), Z2(G),...,Zj(G),... ZJ(G) 
are appropriately selected  topological invariants given as 

∑∑
≤

=
r rs

jj )s,r(f)s,r(E)G(Z , 

where fj(x,y) are real symmetric functions for 1≤j≤J, and quantities E(r,s) denote 
the number of edges in G with end-vertices of degree r and s. (The number E(r,s) 
are sometimes denoted by mr,s). 
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The descriptors represented by X(G) are called the generalized edge-additive 
topological indices. 

It follows that if for graphs Hu and Hv the equalities EHu(r,s)=EHv(r,s) are fulfilled, 
then Zj(Hu)=Zj(Hv) and X(Hu)=X(Hv) hold, independently of the type of 
functions fj(x,y) and the J-variable function F. This means that the topological 
descriptors of the type X(G) are not suitable for discriminating between graphs Hu 
and Hv. 

By specializing functions F and fj(x,y) one can obtain several indices (molecular 
descriptors) from recent literature [3-10]. In a particular case, by selecting 
topological parameters Z1(G) and Z2(G) as 

∑∑
≤

⎟
⎠
⎞

⎜
⎝
⎛ +=

r rs
1 r

s
s
r)s,r(E)G(Z    and   ∑∑

≤
⎟
⎠
⎞

⎜
⎝
⎛ +==

r rs
2 s

1
r
1)s,r(E)G(V)G(Z , 

we can construct the topological index XE(G)=Z1(G)/Z2(G) introduced in a recent 
paper [10]. It has been verified that for index XE(G) the following identity is 
fulfilled: 

∑∑ ∑
≤ ∈

=⎟
⎠
⎞

⎜
⎝
⎛ +==

r rs )G(Vu2

1
E )u(m

)G(V
1

r
s

s
r)s,r(E

)G(V
1

)G(Z
)G(Z)G(X  

In the above formula m(u) stands for the average degree of the vertices adjacent to 
vertex u in G. 

In certain cases the discriminating ability of topological descriptors of the type 
X(G) (for example XE(G)) is strongly limited. This is demonstrated in the 
following example. In Fig. 1 a pair of isospectral graphs, G1 and G2, are shown 
[15]. For them the equality XE(G1)= XE(G2) holds; consequently, they cannot be 
distinguished by the topological index XE(G). 

 
Figure 1 

A pair of isospectral chemical graphs that cannot be distinguished by indices of the type X(G) 
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A possible solution to improve the discriminativity of a topological index is to 
modify it so as to include more information encoded in the graph adjacency 
matrix. For this purpose, it seems logical to take into account the degrees of 
vertices on increasing distances from a single vertex [16-18]. Hence, for i ≥1 we 
define the quantitites 

∑
∈

=
)u(Nv

i
i

)v(d)u(Q  

where Ni(u) denotes the set of all vertices at distance i from vertex u. If Ni(u) is 
empty, we set Qi(u) = 0 by definition. Obviously, Qi(u) is equal to zero for all i 
that exceed the diameter of G. Now we define 

)u(n
)u(Q)u(m

i

i
i =  

where ni(u) is the cardinality of Ni(u). It is assumed that mi(u) =0 if Ni(u) is empty. 
It is easy to see that relations Δ≤≤δ )u(mi  and 1)G(V)u(ni −=∑  hold for 

any vertex u. By averaging mi(u) over all vertices of G we obtain global 
topological indices 

∑
∈

=〉〈
)G(Vu

ii )u(m
)G(V

1)G(m , 

and topological parameters defined as 

∑ ∑∑∑
∈ ∈∈∈

===
)G(Vu )u(Nv)G(Vu

ii
)G(Vu

ii
i

)v(d)u(n)u(m)u(Q)G(Q  

for 1≤i ≤diam(G). From the previous considerations if follows that the topological 
index XE(G) now appears as a special case 〉〈= )G(m)G(X 1E . 

3 Some Theoretical Considerations 

The Zagreb indices belong to the family of the widely used molecular descriptors. 
In what follows we analyse some correspondances between the quantities Qi(u), 
mi(u), ni(u) and the Zagreb indices. 

Recall that the first Zagreb index M1(G) and the second Zagreb index M2(G) of a 
graph G are defined as 

∑∑∑
≤∈

+===
r rs)G(Vu

2
11 )sr)(s,r(E)u(d)G(MM  
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∑∑∑
≤∈

===
r rs)G(E)v,u(

22 rs)s,r(E)v(d)u(d)G(MM  

We refer the reader to surveys [4, 5, 19-21] for more information on Zagreb 
indices. 

Proposition 1 ([10]): Let [d(G)] denote the average degree of a connected graph 
G. Then [ ])G(d)G(m1 ≥〉〈  holds with equality if and only, if G is regular.    ▄ 

Proposition 2 ([22]): Let G be a connected graph. Then 

)u(d)u(m)G(M
)G(Vu

11 ∑
∈

=   and  )u(d)u(m)G(M2 2

)G(Vu
12 ∑

∈

=                 ▄ 

Corollary 2.1  Because Δ≤≤δ )u(m1  this imples that 

 Δ≤=≤δ )G(E2)G(M)G(Q)G(E2 11  

 )G(M)G(M2)G(M 121 Δ≤≤δ  

Lemma 1 ([19]): Let G be a connected graph. Then 

 δ−−−−≤= ))u(d1)G(V()u(d)G(E2)u(m)u(d)u(Q 11        ▄ 

Lemma  2 Let G be a connected graph. Then 

 1)G(V)G(E2)u(m)u(d)u(Q 11 +−≤=  

Proof. Because δ≥1 and 1)G(V)u(d −≤ , from Lemma 1 it follows the claim. ▄ 

From Lemma 2 the following proposition yields: 

Proposition 3  Let G be a connected graph. Then for k=1,2,...positive integers 

( ) ( )k
)G(Vu

k
1

)G(Vu

k
1 1)G(V)G(E2)G(V)u(m)u(d)u(Q +−≤= ∑∑

∈∈

 

with equality if G is a complete graph Kn or a star graph Sn on n≥3 vertices. ▄ 

Corollary 3.1 ([31]): As a particular case, for k=1 we have 

( )1)G(V)G(E2)G(V)u(m)u(d)G(M
)G(Vu

11 +−≤= ∑
∈

 

with equality if G is a complete graph Kn or a star graph Sn on n≥3 vertices. 

Proposition 4  ([23]): Let G be a connected graph. Then 

)u(n)u(d)v(d)u(m)u(d)u(Q 2
)u(Nv

11
1

+≥== ∑
∈

 

and 
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)u(n)u(d)u(d)u(m)u(d)u(Q)u(d 2
2

1
2

1 +≥=  

with equality if and only if G is a triangle- and quadrangle-free graph. ▄ 

Corollary 4.1 Consider the Gordon-Scantlebury index S(G) of a graph G [1, 24]. 
This is a widely-used molecular descriptor of the type X(G) which can be 
calculated as 

( ) { })G(E2)G(M
2
11)u(d)u(d

2
1)G(S 1

)G(Vu

−=−= ∑
∈

 

From the prevous considerations it follows that 

 ∑ ∑
∈ ∈

=−=−≤
)G(Vu

1
)G(Vu

12 )G(S2)G(E2)G(M)G(E2)u(Q)u(n   

and 

∑∑
∈∈

+≥=
)G(Vu

21
)G(Vu

1
2

2 )u(n)u(d)G(M)u(m)u(d)G(M2  

with equality if and only if G is a triangle- and quadrangle-free graph. 

Proposition 5  Let G be a connected graph. Then 

∑∑∑
∈∈∈

===
)G(Vu

2
)G(Vu

22
)G(Vu

22 )u(n)u(d)u(n)u(m)u(Q)G(Q  

Proof. It is based on the following identity: 

∑∑ ∑∑
∈∈ ∈∈

==
)G(Vu

2
)G(Vu )u(Nv)G(Vu

2 )u(n)u(d)v(d)u(Q
2

 ▄ 

Proposition 6  Let G be a connected graph. Then 

)G(M)1)G(V()G(E2)G(Q 1
2i

i −−=∑
≥

 

Proof.  For any vertex u we have 

∑∑∑ ∑∑
≥∈≥ ∈∈

+=+=−
2i

i
)u(Nv2i )u(Nv)u(Nv

)u(Q)v(d)v(d)v(d)u(d)G(E2
1i1

 

The claim now follows by summing over all vertices.                  ▄ 

Corollary 6.1 Let nKG ≠  where Kn denotes the complete graph on n-vertices. 
Then 

)1)G(V()G(E2)G(Q)G(M 21 −≤+  

with equality if and only if, diam(G) =2. 

Proposition 7  Let G be a connected graph. Then 
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)G(M)u(m 1
)G(Vu

2
1 ≥∑

∈

 

with equality if and only if G is regular. 

Proof.  From the Cauchy-Schwarz inequality one obtains 

∑∑∑
∈∈∈

≤=
)G(Vu

2

)G(Vu

2
1

)G(Vu
11 )u(d)u(m)u(d)u(m)G(Q  

Since M1(G)= Q1(G), we have 

)G(M)u(m)G(M 1
)G(Vu

2
11 ∑

∈

≤  

and the claim follows.   ▄ 

A connected graph is called pseudo-regular [25, 26] if there exists a positive 
constant p=p(G) such that each vertex of G has the average neighbor degree 
number equal to p, i.e., m1(u)=p(G) for any vertex u in G. Of course, every regular 
graph is also pseudo-regular. Moreover, it is obvious that )G(p)G(m1 =〉〈  for 
any pseudo-regular graph. 

In Fig. 2 two infinite sequences of pseudo-regular graphs denoted by GA(k) and 
GB(k) are shown [27]. It is interesting to note that m1(u)=3 holds for any vertex u 
of graphs GA(k) and GB(k), where k≥3. 

 
Figure 2 

Pseudo-regular chemical graphs GA(5) and GB(5) that are not regular 

Moreover, for graphs GA(k) and GB(k) the identities E(2,2,)=k, E(4,2)=2k, 
E(4,4)=k, k4)G(E =  are fulfilled. This implies that graphs GA(k) and GB(k) 

cannot be distinguished by topological indices of the type X(G). 

Proposition 8  Let G be a pseudo-regular graph. Then 
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)G(M
)G(M2)G(m)G(p

1

2
1 =〉〈=  

Proof. From Proposition 2 it follows directly that if G is pseudo-regular then 
M1(G) = 2|E(G)|p  and M2(G) = |E(G)|p2 .    ▄ 

Proposition 9  Let G be a connected graph. Then 

)G(M
)G(M2

)u(d

)u(m)u(d

)G(M

)u(Q

1

2

)G(Vu

2
)G(Vu

2
1

2

1

)G(Vu

2
1

≥=
∑

∑∑

∈

∈∈  

with equality if and only if G is pseudo-regular. 

Proof: We start from the Chebyshev inequality ([28], p 43). By specializing bj = aj 

and ∑
=

=
J

1j
j 1w  we obtain the inequality 

2
J

1j
jj

J

1j

2
jj awaw ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥ ∑∑

==

 

with equality if and only if a1= a2,...= aJ. Now we denote by uj the j-th vertex of G 
and define aj = m1(uj) and wj= d2(uj)/M1(G) for 1 ≤j≤ J = |V (G)|. We have 

2

1

2

2

)G(Vu
1

2

1
)G(Vu

2
)G(Vu

2
1

2

)G(M
)G(M2)u(m)u(d

)G(M
1

)u(d

)u(m)u(d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥ ∑∑

∑
∈

∈

∈  

Now the claim follows with equality if and only if G is pseudoregular. ▄ 

It is interesting to note that the left-hand side of the inequality of Proposition 9 is a 
sharp lower bound of the spectral radius of G ([25]). 

Proposition 10  Let G be a connected graph. Then 

)G(V
)GM2

)G(M

))u(m)u(d)u(d(

)u(d

))u(Q)u(d(
1

1

)G(Vu

2
1

2

)G(Vu

2
)G(Vu

2
1

2

≥
+

=
+ ∑

∑
∑

∈

∈

∈  

with equality if and only if G is regular. 

Proof. We compute the variance of quantities defined as bj = d2(uj) + d(uj)m1(uj) 
for 1 ≤j≤ J = |V (G)|. We have 

0b
J
1b

J
1)b(Var

2
J

1j
j

J

1j

2
j ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

==
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Consequently, 

2

2
1

2

)G(Vu
1

2

)G(Vu

2
1

2

)G(V
)GM4))u(m)u(d)u(d(

)G(V
1))u(m)u(d)u(d(

)G(V
1

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≥+ ∑∑

∈∈

 

and this further implies 

)G(V
)GM4))u(m)u(d)u(d(

)G(M
1 1

)G(Vu

2
1

2

1

≥+∑
∈

. 

From there the claim follows, with equality if and only if G is regular.  ▄ 

The left-hand side of the inequality of Proposition 10 represents a sharp lower 
bound on the Laplacian spectral radius of G [29]. 

4 Possibilities of Increasing the Discriminativity 

Comparing the topological indices 〉〈 )G(m1 and 〉〈 )G(m2  it is clear that 
〉〈 )G(m2  should be more discriminative than 〉〈 )G(m1 . Considering the pseudo-

regular graphs GA(k) and GB(k) in Fig. 2, from the previous considerations it 
follows that 3))k(G(m))k(G(m B1A1 =〉〈=〉〈  for k ≥ 3, and 9/28))k(G(m A2 =〉〈  
and 9/32))k(G(m A2 =〉〈  hold for k ≥ 5. 

For isospectral graphs G1 and G2 depicted in Fig. 1 it can be verified that 
7/16)G(m)G(m 2111 =〉〈=〉〈 , moreover 52857.270/177)G(m 12 ≈=〉〈  

and 52024.2840/2117)G(m 22 ≈=〉〈 . As we can observe the numerical 
values of 〉〈 )G(m 12 and 〉〈 )G(m 22  are very close. 

In the following, we will analyse the situations where employing the topological 
descriptor 〉〈 )G(m2 does not result in an improvement of disriminating 
performance. One such situation is, obviously, when G is regular; another one is 
when the graph is, in a sense, “small”. 

Proposition 11 Let G be a connected graph of diameter 2. Then the descriptors 
〉〈 )G(m1 and 〉〈 )G(m2 are algebraically dependent quantities. 

Proof. If the diameter of G is equal to 2, we have )u(d)u(n1 =  
and )u(d1)G(V)u(n 2 −−=  for any vertex u. By Proposition 6, one obtains 

)u(Q)u(Q)v(d)v(d)u(d)G(E2 21
)u(Nv)u(Nv 21

+=+=− ∑∑
∈∈
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This implies that 

( ))u(m1)u(d)G(E2)u(Q)u(d)G(E2)u(Q 112 +−=−−=  

From there it follows that 

( )
∑∑
∈∈ −−

+−
==〉〈

)G(Vu

1

)G(Vu 2

2
2 )u(d1)G(V

)u(m1)u(d)G(E2
)G(V

1
)u(n
)u(Q

)G(V
1)G(m  

Hence, if two graphs of diameter 2 have identical d(u) and m1(u) for all vertices, 
we cannot discriminate between them based solely on the values of 〉〈 )G(m1 and 

〉〈 )G(m2 .     ▄ 

For an illustration, look at the polyhedral graphs of diameter 2 shown in Fig. 3. 

 
Figure 3 

Graphs of diameter 2 that cannot be distinguished by 〉〈 )G(m1 and 〉〈 )G(m2  

It can be easily verified that graphs Gb and Gc are characterized by the following 
identical topological parameters: E(3,3)=3, E(4,3)=6, E(4,4)=3, moreover, 

2/7G(mG(m c1b1 =〉〈=〉〈 , 285714.37/23G(mG(m c2b2 ==〉〈=〉〈 . It should be 
noted that for Gb and Gc the corresponding Wiener indices (W) are also identical, 
namely W(Gb)=W(Gc)=30 [1, 11]. 

The above examples demonstrate that there exist several molecular graphs having 
the same 〉〈 )G(m1  index. Moreover, in certain cases, indices 〉〈 )G(mi  for small 
values of i (i=1,2) still suffer from degeneracy and narrow numerical range. 

As we have already mentioned the occurrence of degeneracy can be decreased by 
taking into account the degrees of neighboring vertices in Ni(u), that is, the 
degrees of all vertices at distance i≥1 from u. Based on this concept, Randić and 
Plavšić proposed a descriptor of the following type [17]: 

∑ ∑∑
∈ ≥∈

+=
)G(Vu 1i

ii
)G(Vu

)u(P)u(Q)u(d)G(AVS  
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In the above formula, constants Pi(u) are appropriately selected positive weights. 
In general, the weight is a strictly decreasing positive function of i. In the chemical 
literature, when Pi = 1/2i for i=1,2, ..., the AVS(G) index is called “the augmented 
valence sum” [17]. This is a useful measure of complexity of chemical graphs. It 
is interesting to note, that if Pi(u)=1 for any i≥1 and for any vertex u, then it 
follows from the Proposition 6 

)G(V)G(E2)G(Q)G(E2)u(Q)u(d)G(AVS
1i

i
)G(Vu 1i

i
)G(Vu

=+=+= ∑∑ ∑∑
≥∈ ≥∈

 

Moreover, if Pi(u)=1/mi(u)  for i≥1, then we get the equality 

( )1)G(V)G(V)G(E2)u(n)G(E2)G(AVS
)G(Vu 1i

i −+=+= ∑ ∑
∈ ≥

 

Finally, if Pi(u)=1/ni(u) for i≥1, then one obtains 

∑∑ ∑
≥∈ ≥

〉〈+=+=
1i

i
)G(Vu 1i

i )G(m)G(V)G(E2)u(m)G(E2)G(AVS  

as a particular case. The descriptor AVS(G) has a better discriminating ability than 
most other traditional topological indices [17]. The only drawback to the 
computation of AVS(G) descriptors is that in every cases, it is necessary to 
determine the corresponding graph distance matrix. 

5 A Novel Set of Molecular Descriptors Based on 
Dissimilarity Functions 

An alternative approach to improve the discriminating ability is to try to combine 
the information captured by 〉〈 )G(m1 and 〉〈 )G(m2 . That would amount to 
quantifying the change in the average degree when one passes from distance 1 to 
distance 2 from a given vertex. Starting with this concept, we selected a 
topological quantity of the type 

( )∑
∈ )G(Vu

21 )u(m),u(mD
)G(V

1 . 

In the expression above the non-negative function D(x,y) is a measure of 
dissimilarity of its arguments. There are several ways to meaningfully choose D(x, 
y). As a particular case, we consider here the dissimilarity function defined as 
D(x,y)= min(x,y)/max(x,y). In that way we obtain a new topological index 

1
))u(m),u(mmax(
))u(m),u(mmin(

)G(V
1)G(T

)G(Vu 21

21 ≤= ∑
∈
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It can be verified that T(G) discriminates between chemical graphs G1 and G2 in 
Fig. 1. Indeed, T(G1)=9553/11760=0.81233 and T(G2)=19391/23520= 0.82447. 
The result is even more interesting when we take into account the fact that G1 and 
G2 are isospectral [15]. A imilareffect appears on a pair of isospectral graphs 
depicted in Fig. 4. [30]. 

 
Figure 4 

A pair of isospectral trees that cannot be distinguished by indices of the type X(G), but are 
discriminated by index T(G) 

Moreover, for graphs of diameter 2 in Fig. 3 we have T(Gb) = 0.8641002 and 
T(Gc)= 0.8868275. Hence we have reasons to consider T(G) as a valuable addition 
to the repertoire of topological indices discriminating among isospectral and/or 
graphs of small diameter. 

Concluding Remarks 

We conclude the paper with some remarks on the properties of the topological 
descriptor T(G). According to our comparative studies performed on isospectral 
graphs and graphs of small diameter, it was found that the topological index T(G) 
has a quite low degeneracy. This is a favorable property when considering the 
efficiency of discrimination among real chemical graphs. Additionally, a practical 
advantage is that descriptors T(G) are simply computed. For this purpose, it is 
enough to determine the degree-distribution of the first and second order 
neighboring vertices (i.e. degrees of vertices at distances i= 1 and 2 from a given 
vertex u). 

It is obvious from the definition that T(G) is equal to one for regular graphs. That 
suggests that T(G) could be used as a kind of measure of non-regularity of a 
graph. For a path Pn on n vertices we easily obtain T(Pn) = 1 – 1/n, in accordance 
with our perception of a path as a quite regular tree. Computing the value of T(G) 
for a star graph Sn on n vertices, however, we face a serious problem since m2(u) is 
equal to zero for the central vertex u. It follows that T(Sn) = 1/n, a result difficult 
to reconcile with the fact that the star is also a fairly regular tree. On the other 
hand, the drastic changes in the average degree of neighbors on distances 1 and 2 
in the star graph are well captured by the index. 

Generally, T(G) is likely to have problems whenever G has a well-connected 
vertices, i.e., vertices adjacent to all other vertices. However, that is not a serious 
problem in practical applications, since well-connected vertices are necessarily of 
a high degree, while chemically interesting and relevant graphs contain vertices of 
degree at most four. 
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