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Abstract: In this paper, the finite-time stability (FTS) of linear continuous time-delay 
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1 Introduction 

Asymptotic stability, BIBO stability and other classical stability concepts deal 

with systems operating over an infinite time interval. However, in many practical 

cases, larger values of the state variables are not allowable in the specified (finite) 

time interval. Then, instead of asymptotic stability, it is preferable to use the 

stability defined over a finite time interval, i.e. finite-time stability (FTS). A 

system will be FTS if its state does not exceed some previously defined limit, for a 

given time interval. This concept stability dates back to the 1950s [1-3]. In 

references [4-11] some controllers are proposed such that the feedback system is 

FTS. 

Many technical systems, such as pneumatic, hydraulic and electric systems, as 

well as process systems in the chemical industry, possess time-delay. The stability 

analysis of time-delay systems is more complex because the time-delay impairs 

the system stability. Similar to the non-delay systems, we can define FTS for time-
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delay systems. In references [12-18], some basic results on FTS are derived. These 

results are conservative, because they use the inequalities based on the norm of 

state vector. Recently, using new boundary technique based on the vector and 

matrix inequality, integral or no integral type, some less conservative results are 

obtained [19–22]. 

This article considers a novel delay-dependent FTS sufficient condition of linear 

continuous time-delay systems. The combination of Lyapunov-like approach and 

two algebraic inequalities (Jensen’s integral inequality and Coppel’s inequality) is 

used to solve this stability problem. The condition is expressed in the form of a set 

of algebraic inequality. 

Notation. 
n and 

n m  denote the n-dimensional Euclidean space and set of all 

n m  real matrices. 0X   means that X is real positive definite symmetric 

matrix; X Y  is equivalent to 0X Y  .   max1 2 ( )TX X X    is matrix 

measure of matrix X . 

2 Preliminaries and Problem Formulation 

Consider the following linear time-delay system: 

 0 1( ) ( ) ( )x t A x t A x t      (1) 

with a initial conditions: 

 ( ) ( ), [ ,0]x t t t      (2) 

where ( ) nx t 
 
is the state vector, 0

n nA  , 1
n nA   and n mB   are 

constant matrices and   is time-delay. 

In the process of derivation of the stability condition, following definition and 

three lemmas are used. 

Definition 1. [22] Time-delay system (1) satisfying the given initial condition (2) 

is said to be finite-time stable (FTS) with respect to ( , , )T   if 

 
[ ,0]

sup ( ) ( ) ( ) ( ) , [0, ]T T

t

t t x t x t t T


   
 

      (3) 

Lemma 1. [22] (Jensen’s integral inequality) For any positive symmetric constant 

matrix n nM  , scalars a , b  satisfying a b , a vector function 

 : , nf a b   such that the integrations concerned are well defined, then: 
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          

T
b b b

T

a a a

f d M f d b a f M f d      
   

    
   
   
    (4) 

Lemma 2. [12] (Coppel’s inequality) For any real square matrix n nM  and 

scalar variable  t  , the following expression holds: 

    2
max

T M tMt M te e e


     (5) 

where ( )M  is matrix measure of the matrix M . 

Lemma 3.  For any symmetric positive definite matrix 0T   , the 

following expressions hold: 

 
12 ( ) ( ) ( ) ( ) ( ) ( )T Tu t v t u t u t v t v t      (6) 

 
12 ( ) ( ) ( ) ( ) ( ) ( )T Tu t v t u t u t v t v t       (7) 

3 Main Result 

In this section Lyapunov-like approach will be used in order to find sufficient 

delay dependent FTS conditions of the time-delay system (1). The following 

lemma, that is necessary for the design of Lyapunov-like function, is developed. 

We note that the new result is based on the result given in [23]. 

Lemma 4. Let a scalar function   V y t  be defined by: 

       TV y t y t y t  (8) 

where  y t  is vector which is defined by: 

        
0

y t x t Q x t d



      (9) 

( ) nx t  is the state vector of the system (1),   n nQ t   is continuous and 

differentiable matrix function over time interval  0, satisfying the following 

differential matrix equation: 

         0 0 , 0,Q A Q Q       (10) 

with initial condition: 
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   1Q A   (11) 

Then, derivative of   V y t  is given with: 

       TV y t y t y t   (12) 

where: 

      0 00 0
T

A Q A Q      (13) 

Proof. From (8), follows: 

 

              

           

0 0

0 0

T T T

T T T

d
V y t x t x t Q d x t Q x t d

dt

d
x t x t Q d x t Q x t d

dt

 

 

     

     

   
        
   
   

   
        
   
   

 

 

  (14) 

First derivative of the integral term    
0

Q x t d



     can be determined as 

follows. From 

 
             

d
Q x t Q x t Q x t

d
     

 


    


 (15) 

      x t x t
t

 


 
   

 
  (16) 

we get: 

 

             
d

Q x t Q x t Q x t
d t

     



    


 (17) 

or rearranging: 

              
d

Q x t Q x t Q x t
t d

     



    


  (18) 

Using the following identity: 

          
d

Q x t Q x t
d t t

   


  


  (19) 

one can finally have: 
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           

           

0 0 0

0

0

d d
Q x t d Q x t d Q x t d

d t d

Q x t d Q x t Q x t

  



        


    

    

    

  



  (20) 

Employing (11), we have: 

              1

0 0

0
d

Q x t d Q x t d A x t Q x t
d t

 

               (21) 

Finally, (14) becomes: 

 

  

   

         

     

     

   

         

0 1

1

0

0

0

0 1

1

0

0

0

T T T T

T T T T T T

T T T

V y t

x t A x t A

x t Q d x t A x t Q

x t Q x t d

x t x t Q d

A x t A x t

Q x t d A x t Q x t











   

  

  



   



   
 

  
     
 
 

 
   
 
 

 
    
 
 

   
 

 
     
 
 









 (22) 

or: 

 

            

     

     

         

0

0

0

0

0

0

0

0

T T T T T T

T T T

V y t x t A x t Q x t Q d

x t Q x t d

x t x t Q d

A x t Q x t Q x t d









  

  

  

  

 
     
 
 

 
   
 
 

 
    
 
 

 
    
 
 









  (23) 

and, after some simple manipulations, follows: 
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             

            

            

            

0 0

0

0

0

0

0 0

0 0

0

0

T T T

T T T

T T T T

T T T

V y t x t A Q A Q x t

x t A Q Q Q Q x t d

x t Q A Q Q Q d x t

x t Q Q Q Q x t d d





 

    

    

       

   

   

 
    
 
 

   





 

  (24) 

By the virtue of (10), one can get: 

 

      

          

          

 
      

      
 

0 0

0

0 0

0

0

0 0 0

0 0

0 0

0

0

T

T T T

T T T T

T T T

T

T

V y t x t x t

x t A Q A Q Q x t d

x t Q A Q A Q d x t

Q A Q Q
x t x t d d

Q A Q Q





 

  

  

 
   

 

 

    

 
     
 
 

  
 

   
  
 





 

 (25) 

that is: 

 

            

     

        

0

0

0 0

T T

T T

T T

V y t x t x t x t Q x t d

x t Q d x t

x t Q Q x t d d





 

  

  

     

    

 
   
 
 

   





 

  (26) 

as well as: 

 

          

         

0

0 0

T

T T

V y t x t x t Q x t d

x t Q d x t Q x t d



 

  

     

 
    

 
 

   
       
   
   



 

 (27) 

and finally: 
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             
0

T T TV y t x t y t x t Q d y t



  
 

     
 
 
   (28) 

           
0

T T TV y t x t x t Q d y t



  
 

    
  

   (29) 

       TV y t y t y t    (30) 

what completes the proof.  

Previously derived result will be used to obtain the following stability condition. 

Theorem 1. The time-delayed system (1)-(2) with is finite-time stable with 

respect to  , , T 
 
if there exists a positive scalar   such that: 

 
       

   0, , 0 , 0,

T Tx t x t q x t x t

q t T

 

 

  

    
  (31) 

   
 max

1

1 1 1
Tq

e
 

  



 

     
 

  (32) 

 

  1 2

1,2

max , 0 , ,

1 1 4
, 4 1

2

q
q






  

 
  

  (33) 

where: 

  0 0R A Q   (34) 

 TR R    (35) 

     
 

 

22

max

1
0 0

2

R
T e

Q Q
R

 

 



   (36) 

 2 R  being matrix measure of matrix R and  0Q is any solution of the 

following nonlinear transcendental matrix equation: 

 
   0 0

10
A Q

e Q A


   (37) 

Proof. From (12) follows: 

            max
TV y t y t y t V y t      (38) 
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Integrating (38) from 0 to t, with  0,t T , we have: 

     
 max 0

t
V y t e V

  
    (39) 

From (8) , one can find: 

 

            

       

0

0 0

0 0 0 2 0T T

T

V y x x x Q x d

Q x d Q x d



 

  

     

  

 
    
  



 

  (40) 

Based on the known inequality (6), for I  , one can get: 

 

              

           

0

0 0 0

0 0 0 0 0T T T

T

T

V y x x x Q Q x d

x x d Q x d Q x d



  

  

        

 

 
       

  



  

 (41) 

Using Jensen’s inequality (4), we get: 

 

              

           

0

0 0

0 0 0 0 0T T T

T T T

V y x x x Q Q x d

x x d x Q Q x d



 

  

        

 

     



 

  (42) 

Introducing the general solution of (10), given with: 

        00 , 0, , 0RQ e Q R A Q        (43) 

and by substituting (43) into (42), the following inequalities are obtained: 

 

              

           

0

0 0

0 0 0 0 0 0 0

0 0

T

T

T T R T R

T T T R R

V y x x x e Q Q e x d

x x d x Q e e Q x d


 

 
 



      

 

     



 

  (44) 
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                 

             

max max

0

max

0 0

0 0 0 0 0 0 0

0 0

T

T

T T R R T

T R R T T

V y x x Q Q e e x x d

x x d e e x Q Q x d


 

 
 

  

       

 

     



 

  (45) 

                 

            

max max

0

max max

0 0

0 0 0 0 0 0 0

0 0

T

T

T T T R R

T T R R T

V y x x x x Q Q e e d

x x d Q Q e e x d


 

 
 

  

       

  

    



 

(46) 

Based on Definition 1, one can find: 

 

         

      

max max

0

max max

0

0 0 0

0 0

T

T

T R R

T R R

V y Q Q e e d

Q Q e e d


 


 

    

    

 

 





  (47) 

From Coppell’s inequality, Lemma 2, follows: 

              2
max

0

0 1 1 0 0
RTV y Q Q e d


 

            (48) 

or: 

 

         
 

 

      
 

 

2

max

0

2

max

0 1 1 0 0
2

1
1 1 0 0

2

R
T

R
T

e
V y Q Q

R

e
Q Q

R

 
 



 

  


  






 
   
 
 

 
   

 
 

  (49) 

or finally: 

      0 1 1V y        (50) 

Based on (8)-(9), we have: 

             
0

2T Tx t x t x t Q x t d V y t



       (51) 

or: 
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             
0

2T Tx t x t V y t x t Q x t d



       (52) 

Let us find the right second term in inequality (52). By using the inequality (7) for 

0pI   and by virtue of (31) and (43), one can find: 

 

     

           

           

            

0

0 0

0 0

max

0 0

2

1

0 0

0 0

T

T

T

T T T

T R T R T

T T R R T

x t Q x t d

x t Q Q x t d x t x t d

q
x t e Q Q e x t d x t x t d

q
Q Q x t e e x t d x t x t d



 

 
 

 
 

  

     

 

  

  

   


 


 




 

 

 

  (53) 

or: 

   

     

              

              

        
 

 
   

0

max max

0

2
max

0

2

max

0

2

0 0

0 0

0 0
2

T

T

T T R R T

RT T T

R
T T T

x t Q x t d

q
Q Q x t x t e e d x t x t

q
Q Q x t x t e d x t x t

e q
Q Q x t x t x t x t

R




 


 

 
 



  


  


 










  

 


 


 








 (54) 

or: 

 

     

    
 

 
       

   

0

2

max

2

1
0 0

2

T

R
T T T

T

x t Q x t d

e q
Q Q x t x t x t x t

R

q
x t x t



 

  









  


 



 
    



  (55) 
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Thus, by using (39), (50), (52) and (55), leads to: 

 

          

        

        

max

max

0

1 1

T T

t T

t T

q
x t x t V y t x t x t

q
e V y x t x t

q
e x t x t












   





 
     

 
     

 
       

  (56) 

and: 

 

      
 

 max1 1 1 , 0,
tTq

x t x t e t T


   
 

       
 

  (57) 

where: 

 

1 0
q

  


  (58) 

Obviously, if the condition (33) holds, then the inequality (58) is satisfied. 

Finally, from the above inequality and (32), we get: 

      , 0,Tx t x t t T     (59) 

Remark 1. For the derived stability criteria, an existence of solution of the 

nonlinear algebraic matrix equation (37) is a necessary condition. In other words, 

the equation (37) must have at least one solution with respect to  0Q , in order to 

Theorem 1 can be generally applied. 

4 Numerical Example 

Example 1. Given a system of the form: 

 

     

   

0 1

0 1

0.1

( ) 1 1 1 , 0.1,0

1.7 1.7 0 1.5 1.7 0.1

1.3 1 0.7 , 1.3 1.5 0.3

0.7 1 0.6 0.7 1 0.1

T

x t A x t A x t

t t

A A



  

  

    
   

    
   
       

 (60) 
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It is obvious that: 

     3 , ,0T t t t        

Figures 1-2 show the initial response ( )x t  and the norm of state vector ( ) ( )Tx t x t  

of the system (60). Notice that the system (60) is not asymptotically stable. In 

addition, we determine upper bound of  T  such that the system (60) is FTS with 

respect  , , T  . 

0 0.5 1 1.5 2
0

2

4

6

8

10

Time

x
(t

)

 

 

x
1
(t)

x
2
(t)

x
3
(t)

 

Figure 1 

The state response ( )x t  of the system (60) 

Based on the initial response of the system (60), for following value of the 

parameter q   can be adopted so (31) is valid: 0.9q  . 

 

Figure 2 

The norm ( ) ( )Tx t x t  of the state vector of the system (60) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22
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40

60
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120

Time

X
T
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(t
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Tm  = 0.707 Ta  = 1.945 
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From (34) and (37) one can find: 

1.5279 1.7336 0.0994

1.2328 1.4145 0.2936

0.5249 0.8069 0.1575

(0)Q

 
 








 





 

0.1721 0.0336 0.0994

0.0672 0.4145 0.4064

0.1751 1.8069 0.4425

R

 
 


 




 





, 

0.3442 0.0335 0.2745

0.0335 0.8290 2.2133

0.2745 2.2133 0.8849

 
 

 
 
  

 

so: 

    max 0 0 9.8109TQ Q  ,   1.1789R  , 1.1064  , 

1 0.1014  , 2 0.8025   ,  0.1014, 0.8025 , 

4 0.3983 1q   ,  max 2.3578   . 

Let  100, 2000, 5000   and find upper bound of T , 
mT , so the system (60) is 

FTS. The results of the stability analysis, for different values of the parameter  , 

are shown in Table 1 using various methods: [17], [18], [21] and Theorem 1 (this 

paper). The actual values of parameter T , aT  , are estimated from the norm of 

state vector and shown in Table 1. Table 1 also lists the corresponding values of 

the parameter  . 

Table 1 

Upper bound of T , mT  

 
100  ,  

1.945aT  , see Fig. 2 

2000  , 

3.525aT   

5000  , 

4.004aT   

[17]  0.585 1.085 1.238 

[18]  0.448 0.842 0.962 

[21]  

[22, without uncertainty] 
1.225 2.517  2.939 

Theorem 1 
0.707, see Fig. 2 

( 0.2865 ) 

1.978 

( 0.2851 ) 

2.367 

( 0.2837 )  

From Table 1, it follows that Theorem 1 gives significantly better results than [17] 

and [18], but slightly poor results than [21] and [22]. However, unlike [21] and 

[22], which use LMI, Theorem 1 is based on algebraic inequalities, which can be 

solved without using appropriate optimization methods. Thus, compared to [21] 

and [22], the computational complexity of the presented stability criterion is 

significantly reduced. 
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Conclusion 

This paper considers FTS of linear continuous time-delay systems. The 

combination of Lyapunov-like approach and two algebraic inequalities (Jensen’s 

and Coppel’s inequality) is used. The new sufficient, delay-dependent FTS 

criterion with algebraic inequality has been derived. The obtained result reduces 

the numerical computation. 
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