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Abstract: This paper presents the determination of the central axis of d’Alembert’s
fictitious forces system for plane bars and plates in uniform rotation motion around an axis
in their plane. General cases of bars and plates are studied. A general law for the
determination of the support of the resultant vector of d’Alembert’s fictitious forces is
established. This law is based on the position of the center of mass of the rotation surface
and body generated by the bar and the plate in rotation, respectively.
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1 Introduction

A number of problems on the dynamics of rigid bodies [1] are solved by the
application of d’Alembert’s principle [2], [3], [4], [5].

In order to solve the problems on plates and bars having a uniform rotation motion
by using d’Alembert’s principle, it is necessary to know the position of the support
of the resultant vector of d’Alembert’s fictitious forces. Finding the central axis
can sometimes be difficult. In the technical literature [4], [5] the support of the
resultant vector of d’Alembert’s fictitious forces is obtained by the integration of
the elementary moment of the d’Alembert’s elementary fictitious force and by
stating the condition that the resultant moment be zero.
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In this paper the authors propose a general method for the determination of the
support of the resultant vector of d’Alembert’s fictitious forces for bars and plates
having a uniform rotation motion. The law proposed is original and is based on the
position of the center of mass of the rotation surface and body generated by bar
and plate in rotation, respectively.

2 Bars in Rotation Motion

Let us consider a homogeneous plane curve bar (Figure 1a), articulated in point A.
The bar rotates with constant angular velocity @ , around the vertical axis which

passes through point A and is contained in the plane of the curve.

The system of d’Alembert’s fictitious forces (parallel forces) is equivalent to a

resultant force on the central axis (M ™ =0) [5]. In these conditions we want to
find the support of the resultant vector of d’ Alembert’s fictitious forces.
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Figure 1
Determination of the support of the resultant vector of d’Alembert’s fictitious forces for a bar having a
rotation motion: a) bar in rotation motion; b) application of d’Alembert’s principle; c) rotation surface
generated by the bar in rotation

We relate the curve to a Cartesian reference system (Figure 1b). We isolate an
element of infinite little length ds. The elementary d’Alembert’s fictitious force
dF"™ is written as follows:

dF" =@’ xdm=a’xpds , (1)

where p represents the linear density.

—-82-



Acta Polytechnica Hungarica Vol. 8, No. 2, 2011

If 77 denotes the y-coordinate of a point I on the support of the resultant vector,

then the moment of the d’Alembert’s elementary fictitious force with respect to
this point will be:

M} =dF"(y—n)= o’ px(y—n)ds. @)

Finally, the resultant moment of d’Alembert’s fictitious forces is:

M} = [aM] = [ px(y—n)ds = po’ [xyds —npw’ [xds . 3)
(D) (D) () (D)

As point I is situated on the support of the resultant vector of d’Alembert’s
fictitious forces, the resultant moment of d’Alembert’s fictitious forces is zero.
Taking this condition into account, it follows that:

P’ jxyds
— (p)
n=—7>—. (4)
po’ J.xds
(p)
If we amplify the expression of 77 by 2z , we obtain the product 2mxds , which is

equal to the elementary area dA generated by the rotation of the element of infinite
little length ds (Figure 1c¢):

po’ jxyds Ixyds jy27zxds jydA
(p)

(2) (2) L 5)

77 = = = =
pa’ des jxds IZmds IdA
(D) (D) (p) (p)
It follows that, for a plane bar in rotation motion, the support of the resultant
vector of d’Alembert’s fictitious forces passes through the center of mass of the
rotation surface generated by the curve in rotation.

Let us consider the example of a homogeneous bar ABO (Figure 2a), consisting of
two parts: a circle arch AB of radius R and a straight part OB = R. The linear
density of the material is p (kg/m). The circle arch is articulated in A. The
straight part OB is supported in point O. The plane which contains the bar rotates
with constant angular velocity @ around the vertical axis that passes through
points O and A. We want to find the angular velocity @ so that the bar will not
touch the rotation axis in O.
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Application for a bar in rotation motion: a) bar in rotation motion; b) determination of the support of
the resultant vector of d’ Alembert’s fictitious forces by the “classic” method; c) application of

relation(8)
The support of the resultant vector of d’Alembert’s fictitious forces for the circle
arch AB can be determined by using relation (5), or in the “classic” way.

First we will use the “classic” method [4]. Let us consider an element of the bar of
length ds which corresponds to an angle dO (Figure 2b). For this element the
d’Alembert’s elementary fictitious force is:

dF" = @’xdm = @’ xpds = @’ -Rcos@-p-Rdb = po’ R’ cos0d6 . (6)

We consider that the support of the resultant vector of d’Alembert’s fictitious
forces crosses the rotation axis at distance 7 from the center of the circle arch AB.

The moment of the d’Alembert’s elementary fictitious force with respect to a point
I, on the support of the resultant vector, is:

dM " =dF"(n—Rsin®)= po’R’ cosO(n—Rsin6)do . (7)

The resultant moment will be:

7/2 /2
M= j dM " = jpszzcose(n—RsinH)dH = p&’R’n jcosede—
(D) 0 0
/2 7/2 ] 7/2
- p’ R’ Jsin OcosOdO = pa’ R’y jcosﬁd@—;pszj jsinZ&d& . (8)
0 0 0

With the change of variable u = 26 , from relation (8) we obtain:

. 1 . 1
M= pa)zRZ?]+2pa)2R3J.(—sinu)du = pszzn—Epszj. )
0
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The resultant moment M]" is zero on the support of the resultant vector of
d’Alembert’s fictitious forces. From relation (9) it results that 7=R/2.

The same result can be quickly obtained by applying relation (5). By rotation, the
curve bar AB generates a hemisphere surface. This is a special case of a spherical
zone. The center of mass is on the rotation axis at the distance R/2 from the center
of the sphere. The support of the resultant vector of d’ Alembert’s fictitious forces
crosses the rotation axis in this point.

The resultant vector of d’Alembert’s fictitious forces is:

4
Rsin—

) R
R i PR (10

2

SN

The force of gravity is:

prRg
£/ 11
> (1n

For the straight bar OB the support of the resultant vector of d’Alembert’s
fictitious forces is in the direction of the line OB and crosses the rotation axis in
point O.

G, =pgly, =

The resultant vector of d’ Alembert’s fictitious forces for the straight bar OB is:

2 2
Fin _ Voo pR w
2 TMygac, = 5

(12)

The force of gravity corresponding to the straight bar OB is:
G,=pgly =pRg. (13)

Now we will apply d’Alembert’s principle. We isolate the bar ABO and we obtain
the system of forces in Figure 2c. We write the moment’s equation with respect to
point A:

R pR&’ Rg 2R R

N-R+pRa@® - =4 PE2L g PTE 28 L Re-Z=0. (14)
2 2 2 T 2

We obtain the expression for the reaction in point O:
3 2
N =pR Eg—Ra) . (15)

From the condition N < 0 we obtain the value for the angular velocity o :

wz\/%. (16)
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3 Plates in Rotation Motion

Let us consider a homogeneous plane plate (Figure 3a). This plate rotates with a
constant angular velocity @ , around a vertical axis which is identical to a straight
leg. The axis is contained in the plane of the plate.

The system of d’Alembert’s fictitious forces (parallel forces) is reduced to a

s

resultant vector on the central axis (M " =0) [5]. In these conditions we want to
find the support of the resultant vector of d’ Alembert’s fictitious forces.
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Figure 3
Determination of the support of the resultant vector of d’Alembert’s fictitious forces for a plate in
rotation motion: a) plate in rotation motion; b) application of d’Alembert’s principle; c) rotation body

generated by plate in rotation

We relate the plate to a Cartesian reference system (Figure 3b). We isolate an
element of infinite little area dA=dxdy. The elementary d’Alembert’s fictitious
force dF" is written:

dF" = @’ xdm = 0’ xpdA = o’ xpdxdy , (17)
where p represents the surface density.

If 7 denotes the y-coordinate of a point I on the support of the resultant vector,

then the moment of the d’Alembert’s elementary fictitious force with respect to
this point will be:

M} =dF"(y—n) = px(y-n)dxdy. (18)
Finally, the resultant moment of d’Alembert’s fictitious forces is:

in __
M,

= de;‘" = jwsz(y—n)dxdy = po’ jxydxdy—npaﬂ jxdxdy. (19)
(o) (0) (D) (0)
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As point I is situated on the support of the resultant vector of d’Alembert’s
fictitious forces, the resultant moment of these forces is zero. Taking this
condition into account it follows that:

P’ j xy dxdy
_ (p) )
P’ j xdxdy
(p)

(20)

If we amplify the expression of 77 by 27 , we obtain the product 27zx dxdy , which

is equal to the elementary volume dV generated in rotation by the element of
infinite little area dA (Figure 3c):

po’ Ixy dxdy Ixy dxdy _[ych dxdy Ide
n= (D) _ (D) _ 0 )

po’ jxdxdy dexdy J.2izxdxdy jdV
(p) (p) (p) (p)

It results that, for a plane plate in rotation motion, the support of the resultant

vector of d’Alembert’s fictitious forces passes through the center of mass of the
rotation body generated by the plate in rotation.

=JYc- 21

Figure 4

Application for a plate in rotation motion: a) plate in rotation motion; b) determination of the support
of the resultant vector of d’Alembert’s fictitious forces by “classic” method; ¢) application of
relation(21)

Let us consider the example of a homogeneous plane plate OAB, a quarter of disc
(Figure 4a) of radius R. The surface density of the material is p (kg/m?). The
plate rotates with constant angular velocity @ around the vertical axis that passes
through points O and A. We want to find the angular velocity @ so that the plate
will not touch the rotation axis in O.

The resultant vector support of d’Alembert’s fictitious forces can be found using
the “classic” method or relation (21).
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First we will use the “classic” method [4]. Let us consider an element of the plate
of area dA which corresponds to an angle d0 and a radius » (Figure 4b). For this
element the d’Alembert’s elementary fictitious force is:

dF" = @’xdm = 0’xpdA = & -rcosO- p-rdddr = po’r’ cos0drdo . (22)

We consider that the support of the resultant vector of d’Alembert’s fictitious
forces crosses the rotation axis at the distance 7 from the center O. The moment

of the d’Alembert’s elementary fictitious force with respect to a point I, on the
support of the resultant vector, is:

dM} = dF" (n—rsin@) = pw’r’ cosO(n —rsind)drdo . (23)

The resultant moment will be:

M= ”d ” :ji”./[zpa)zrz cosO(n—rsind)drdo :pwznf”jzrz cos 0 drd —
(D) 00 0

R ﬂ/Z

—pa)zj. J.r3 sin@cos Odrdd = po’|
0 0

Stz

72 ] R7/2
jrz cosedrde—zj jﬁ sin20drdf |. (24)
0 0 0

With the change of variable u = 28, from relation (24) we obtain:

3
r

M}'n:pa)Z 3

Rrx 3
77+ipa)zjjr3(—sinu)drdu=pa)2r—77—ipa)2R4. (25)
4 00 3 8

The resultant moment M)" is zero on the support of the resultant vector of

d’Alembert’s fictitious forces. From relation (25) it follows that 77 = %R .

We obtain the same result by applying relation (21). By rotation, the plate
generates a hemisphere. The centre of mass is on the rotation axis at the distance
3 L

ER from the center of the sphere. In this point the support of the resultant vector

of d’Alembert’s fictitious forces crosses the rotation axis.

The resultant vector of d’Alembert’s fictitious forces is:

Rsinﬂ
. TR? 2 VR B

F" =ma] = = sin—w =—pR o . 26

c=P 4 3 =z P 3,0 (26)

4
The force of gravity is:
1

G=pAg=Zp7rR2g. 27)
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Now we will apply d’Alembert’s principle. We isolate the plate OAB and we
obtain the system of forces in Figure 4c. We write the moment’s equation with
respect to point A:

1

Zp”Rzg-ﬁ:

N-R+§pR3a)z~§R— 0. (28)

We obtain the expression for the reaction in point O:

1 5
N=pR’| =g——Ra’|. 29
Y (3g Y ] 29

From the condition N <0 we obtain the value for the angular velocity o :

wz\/%. (30)

Conclusions

In this paper the authors have proposed a rule for the determination of the support
of the resultant vector of d’Alembert’s fictitious forces.

To sum up, for a plane bar having a rotation motion, the support of the resultant
vector of d’Alembert’s fictitious forces passes through the center of mass of the
rotation surface generated by the curve in rotation. Also, for a plane plate in
rotation motion, the support of the resultant vector of d’Alembert’s fictitious
forces passes through the center of mass of the rotation body generated by the
plate in rotation.

If we consider the fact that the positions of the center of mass for a large number
of bodies can be found in the technical literature, the method proposed here is
accessible because it replaces the integral calculus.
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